
www.it-ebooks.info

http://www.it-ebooks.info/

OpenCV Computer Vision with
Python

Learn to capture videos, manipulate images, and track
objects with Python using the OpenCV Library

Joseph Howse

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

OpenCV Computer Vision with Python

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1160413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-392-3

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Joseph Howse

Reviewer(s)
David Millán Escrivá

Abid K.

Acquisition Editor
Erol Staveley

Commissioning Editor
Neha Nagvekar

Technical Editors
Ankita Meshram

Veena Pagare

Project Coordinator
Sneha Modi

Proofreader
Lauren Tobon

Indexer
Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Joseph Howse (Joe) is fanciful. So to him, the virtual world always seemed
to reach out into reality. One of his earliest memories is of watching an animated
time-bomb on the screen of a Tandy Color Computer. The animation was programmed
in BASIC by Joe's older brother, Sam, who explained, "I'm making a bomb. Get ready!"
The bomb exploded in a rain of dots and a rumble of beeps as Joe and Sam ran to hide
from the fallout.

Today, Joe still fancies that a computer program can blast a tunnel into reality. As
a hobby, he likes looking at reality through the tunnel of a digital camera's lens. As
a career, he develops augmented reality software, which uses cameras and other
sensors to composite real and virtual scenes interactively in real time.

Joe holds a Master of Computer Science degree from Dalhousie University. He does
research on software architecture as applied to augmented reality.

Joe works at Ad-Dispatch, an augmented reality company, where he develops
applications for mobile devices, kiosks, and the Web.

Joe likes cats, kittens, oceans, and seas. Felines and saline water sustain him. He lives
with his multi-species family in Halifax, on Canada's Atlantic coast.

I am able to write and to enjoy writing because I am constantly
encouraged by the memory of Sam and by the companionship
of Mom, Dad, and the cats. They are my fundamentals.

I am indebted to my editors and reviewers for guiding this book to
completion. Their professionalism, courtesy, good judgment, and
passion for books are much appreciated.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

David Millán Escrivá was eight years old when he wrote his first program on an
8086 PC with Basic language, which enabled the 2D plotting of basic equations; he
started with his computer development relationship and created many applications
and games.

In 2005, he finished his studies in IT from the Universitat Politécnica de Valencia
with honors in human-computer interaction supported by computer vision with
OpenCV (v0.96). He had a final project based on this subject and published it on
HCI Spanish congress.

He participated in Blender source code, an open source and 3D-software project, and
worked in his first commercial movie Plumiferos—Aventuras voladoras as a Computer
Graphics Software Developer.

David now has more than 10 years of experience in IT, with more than seven years
experience in computer vision, computer graphics, and pattern recognition working
on different projects and startups, applying his knowledge of computer vision,
optical character recognition, and augmented reality.

He is the author of the DamilesBlog (http://blog.damiles.com), where he
publishes research articles and tutorials about OpenCV, computer vision in general,
and Optical Character Recognition algorithms. He is the co-author of Mastering
OpenCV with Practical Computer Vision Projects , Daniel Lélis Baggio, Shervin Emami,
David Millán Escrivá, Khvedchenia Ievgen, Naureen Mahmood, Jasonl Saragih, and
Roy Shilkrot, Packt Publishing. He is also a reviewer of GnuPlot Cookbook, Lee Phillips,
Packt Publishing.

I thank my wife, Izaskun, and my daughter, Eider, for their
patience and support. Love you. I also thank the OpenCV
team and community that gave us this wonderful library.

Congrats to the author for this perfect introduction to Python and
OpenCV book.

www.it-ebooks.info

http://www.it-ebooks.info/

Abid K. is a student from India pursuing M.Tech in VLSI Design at National
Institute of Technology (Suratkal). He finished his B.Tech in Electronics &
Communication. He is particularly interested in developing hardware architectures
for image processing and speech processing algorithms.

He started using OpenCV Python in his college days as a hobby. The lack of
learning resources on OpenCV Python at that time made him to create his own
blog, www.opencvpython.blogspot.com, and he still maintains it. In his free time,
he used to answer questions related to OpenCV Python at stackoverflow.com,
and those discussions are reflected in his blog articles. He also works as a freelancer
during college holidays and even helps school students grow their interest in
OpenCV Python and computer vision.

Congrats to the author and all those who worked on this book. I
think this might be the first book exclusively on OpenCV Python.
And thanks to the editors and publishers who gave me a chance to
work on the publication of this book.

Thanks to all my friends who introduced OpenCV to me and helped
me learn it.

www.it-ebooks.info

http://www.opencvpython.blogspot.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Setting up OpenCV	 7

Choosing and using the right setup tools	 8
Making the choice on Windows XP, Windows Vista, Windows 7,
or Windows 8	 8

Using binary installers (no support for depth cameras)	 9
Using CMake and compilers	 9

Making the choice on Mac OS X Snow Leopard, Mac OS X Lion,
or Mac OS X Mountain Lion	 12

Using MacPorts with ready-made packages	 13
Using MacPorts with your own custom packages	 14
Using Homebrew with ready-made packages (no support for depth cameras)	 16
Using Homebrew with your own custom packages	 17

Making the choice on Ubuntu 12.04 LTS or Ubuntu 12.10	 17
Using the Ubuntu repository (no support for depth cameras)	 18
Using CMake via a ready-made script that you may customize	 18

Making the choice on other Unix-like systems	 19
Running samples	 20
Finding documentation, help, and updates	 21
Summary	 22

Chapter 2: Handling Files, Cameras, and GUIs	 23
Basic I/O scripts	 23

Reading/Writing an image file	 24
Converting between an image and raw bytes	 25
Reading/Writing a video file	 26
Capturing camera frames	 27
Displaying camera frames in a window	 28

Project concept	 30

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

An object-oriented design	 31
Abstracting a video stream – managers.CaptureManager	 32
Abstracting a window and keyboard – managers.WindowManager	 37
Applying everything – cameo.Cameo	 39

Summary	 40
Chapter 3: Filtering Images	 41

Creating modules	 41
Channel mixing – seeing in Technicolor	 42

Simulating RC color space	 44
Simulating RGV color space	 45
Simulating CMV color space	 45

Curves – bending color space	 46
Formulating a curve	 47
Caching and applying a curve	 48
Designing object-oriented curve filters	 50
Emulating photo films	 52

Emulating Kodak Portra	 53
Emulating Fuji Provia	 53
Emulating Fuji Velvia	 54
Emulating cross-processing	 54

Highlighting edges	 55
Custom kernels – getting convoluted	 56
Modifying the application	 59
Summary	 60

Chapter 4: Tracking Faces with Haar Cascades	 61
Conceptualizing Haar cascades	 62
Getting Haar cascade data	 63
Creating modules	 64
Defining a face as a hierarchy of rectangles	 64
Tracing, cutting, and pasting rectangles	 65
Adding more utility functions	 67
Tracking faces	 68
Modifying the application	 73

Swapping faces in one camera feed	 74
Copying faces between camera feeds	 77

Summary	 78
Chapter 5: Detecting Foreground/Background Regions and Depth	 79

Creating modules	 79
Capturing frames from a depth camera	 80
Creating a mask from a disparity map	 83
Masking a copy operation	 84

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Modifying the application	 86
Summary	 88

Appendix A: Integrating with Pygame	 89
Installing Pygame	 89
Documentation and tutorials	 90
Subclassing managers.WindowManager	 90
Modifying the application	 92
Further uses of Pygame	 92
Summary	 93

Appendix B: Generating Haar Cascades for Custom Targets	 95
Gathering positive and negative training images	 95
Finding the training executables	 96

On Windows	 96
On Mac, Ubuntu, and other Unix-like systems	 97

Creating the training sets and cascade	 97
Creating <negative_description>	 98
Creating <positive_description>	 99
Creating <binary_description> by running <opencv_createsamples>	 99
Creating <cascade> by running <opencv_traincascade>	 100

Testing and improving <cascade>	 100
Summary	 101

Index	 103

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book will show you how to use OpenCV's Python bindings to capture
video, manipulate images, and track objects with either a normal webcam or a
specialized depth sensor, such as the Microsoft Kinect. OpenCV is an open source,
cross-platform library that provides building blocks for computer vision experiments
and applications. It provides high-level interfaces for capturing, processing, and
presenting image data. For example, it abstracts details about camera hardware and
array allocation. OpenCV is widely used in both academia and industry.

Today, computer vision can reach consumers in many contexts via webcams, camera
phones, and gaming sensors such as the Kinect. For better or worse, people love to
be on camera, and as developers, we face a demand for applications that capture
images, change their appearance, and extract information from them. OpenCV's
Python bindings can help us explore solutions to these requirements in a high-level
language and in a standardized data format that is interoperable with scientific
libraries such as NumPy and SciPy.

Although OpenCV is high-level and interoperable, it is not necessarily easy for new
users. Depending on your needs, OpenCV's versatility may come at the cost of a
complicated setup process and some uncertainty about how to translate the available
functionality into organized and optimized application code. To help you with
these problems, I have endeavored to deliver a concise book with an emphasis on
clean setup, clean application design, and a simple understanding of each function's
purpose. I hope you will learn from this book's project, outgrow it, and still be able
to reuse the development environment and parts of the modular code that we have
created together.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Specifically, by the end of this book's first chapter, you can have a development
environment that links Python, OpenCV, depth camera libraries (OpenNI,
SensorKinect), and general-purpose scientific libraries (NumPy, SciPy). After
five chapters, you can have several variations of an entertaining application that
manipulates users' faces in a live camera feed. Behind this application, you will
have a small library of reusable functions and classes that you can apply in your
future computer vision projects. Let's look at the book's progression in more detail.

What this book covers
Chapter 1, Setting up OpenCV, lets us examine the steps to setting up Python,
OpenCV, and related libraries on Windows, Mac, and Ubuntu. We also discuss
OpenCV's community, documentation, and official code samples.

Chapter 2, Handling Files, Cameras, and GUIs, helps us discuss OpenCV's I/O
functionality. Then, using an object-oriented design, we write an application
that displays a live camera feed, handles keyboard input, and writes video
and still image files.

Chapter 3, Filtering Images, helps us to write image filters using OpenCV, NumPy, and
SciPy. The filter effects include linear color manipulations, curve color manipulations,
blurring, sharpening, and outlining edges. We modify our application to apply some
of these filters to the live camera feed.

Chapter 4, Tracking Faces with Haar Cascades, allows us to write a hierarchical face
tracker that uses OpenCV to locate faces, eyes, noses, and mouths in an image. We
also write functions for copying and resizing regions of an image. We modify our
application so that it finds and manipulates faces in the camera feed.

Chapter 5, Detecting Foreground/Background Regions and Depth, helps us learn about
the types of data that OpenCV can capture from depth cameras (with the support of
OpenNI and SensorKinect). Then, we write functions that use such data to limit an
effect to a foreground region. We incorporate this functionality in our application so
that we can further refine the face regions before manipulating them.

Appendix A, Integrating with Pygame, lets us modify our application to use Pygame
instead of OpenCV for handling certain I/O events. (Pygame offers more diverse
event handling functionality.)

Appendix B, Generating Haar Cascades for Custom Targets, allows us to examine a set of
OpenCV tools that enable us to build trackers for any type of object or pattern, not
necessarily faces.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What you need for this book
This book provides setup instructions for all the relevant software, including
package managers, build tools, Python, NumPy, SciPy, OpenCV, OpenNI, and
SensorKinect. The setup instructions are tailored for Windows XP or later versions,
Mac OS 10.6 (Snow Leopard) or later versions, and Ubuntu 12.04 or later versions.
Other Unix-like operating systems should work too, if you are willing to do your
own tailoring of the setup steps. You need a webcam for the core project described
in the book. For additional features, some variants of the project use a second
webcam or even an OpenNI-compatible depth camera, such as Microsoft Kinect or
Asus Xtion PRO.

Who this book is for
This book is great for Python developers who are new to computer vision and who
like to learn through application development. It is assumed that you have some
previous experience in Python and the command line. A basic understanding of
image data (for example, pixels and color channels) would also be helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The two executables on Windows are
called ONopencv_createsamples.exe and ONopencv_traincascade.exe."

A block of code is set as follows:

negative
 desc.txt
 images
 negative 0.png
 negative 1.png

Any command-line input or output is written as follows:

> cd negative

> forfiles /m images*.png /c "cmd /c echo @relpath" > desc.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. The example code for this book is also available
from the author's website at http://nummist.com/opencv/.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it. You can also
contact the author directly at josephhowse@nummist.com or you can check his
website, http://nummist.com/opencv/, for answers to common questions
about this book.

www.it-ebooks.info

mailto:copyright@packtpub.com
mailto:josephhowse@nummist.com
http://nummist.com/opencv
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV
This chapter is a quick guide to setting up Python 2.7, OpenCV, and related libraries.
After setup, we also look at OpenCV's Python sample scripts and documentation.

The following related libraries are covered:

•	 NumPy: This is a dependency of OpenCV's Python bindings. It provides
numeric computing functionality, including efficient arrays.

•	 SciPy: This is a scientific computing library that is closely related to NumPy.
It is not required by OpenCV but it is useful for manipulating the data in
OpenCV images.

•	 OpenNI: This is an optional dependency of OpenCV. It adds support for
certain depth cameras, such as Asus XtionPRO.

•	 SensorKinect: This is an OpenNI plugin and optional dependency of
OpenCV. It adds support for the Microsoft Kinect depth camera.

For this book's purposes, OpenNI and SensorKinect can be considered optional. They
are used throughout Chapter 5, Separating Foreground/Background Regions Depth, but
are not used in the other chapters or appendices.

At the time of writing, OpenCV 2.4.3 is the latest version. On some operating
systems, it is easier to set up an earlier version (2.3.1). The differences between these
versions should not affect the project that we are going to build in this book.

Some additional information, particularly about OpenCV's build options and their
dependencies, is available in the OpenCV wiki at http://opencv.willowgarage.
com/wiki/InstallGuide. However, at the time of writing, the wiki is not up-to-date
with OpenCV 2.4.3.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[8]

Choosing and using the right setup tools
We are free to choose among various setup tools, depending on our operating system
and how much configuration we want to do. Let's take an overview of the tools for
Windows, Mac, Ubuntu, and other Unix-like systems.

Making the choice on Windows XP, Windows
Vista, Windows 7, or Windows 8
Windows does not come with Python preinstalled. However, installation wizards
are available for precompiled Python, NumPy, SciPy, and OpenCV. Alternatively,
we can build from source. OpenCV's build system uses CMake for configuration
and either Visual Studio or MinGW for compilation.

If we want support for depth cameras including Kinect, we should first install
OpenNI and SensorKinect, which are available as precompiled binaries with
installation wizards. Then, we must build OpenCV from source.

The precompiled version of OpenCV does not offer support
for depth cameras.

On Windows, OpenCV offers better support for 32-bit Python than 64-bit Python.
Even if we are building from source, I recommend using 32-bit Python. Fortunately,
32-bit Python works fine on either 32-bit or 64-bit editions of Windows.

Some of the following steps refer to editing the system's Path variable.
This task can be done in the Environment Variables window of Control
Panel.
On Windows Vista/Windows 7/Windows 8, open the Start menu and
launch Control Panel. Now, go to System and Security | System |
Advanced system settings. Click on the Environment Variables button.
On Windows XP, open the Start menu and go to Control Panel | System.
Select the Advanced tab. Click on the Environment Variables button.
Now, under System variables, select Path and click on the Edit button.
Make changes as directed. To apply the changes, click on all the OK
buttons (until we are back in the main window of Control Panel). Then,
log out and log back in (alternatively, reboot).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Using binary installers (no support for depth
cameras)
Here are the steps to set up 32-bit Python 2.7, NumPy, and OpenCV:

1.	 Download and install 32-bit Python 2.7.3 from http://www.python.org/
ftp/python/2.7.3/python-2.7.3.msi.

2.	 Download and install NumPy 1.6.2 from http://sourceforge.net/
projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-
python2.7.exe/download.

3.	 Download and install SciPy 11.0 from http://sourceforge.net/
projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-
python2.7.exe/download.

4.	 Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

5.	 Copy <unzip_destination>\opencv\build\python\2.7\cv2.pyd to
C:\Python2.7\Lib\site-packages (assuming we installed Python 2.7 to
the default location). Now, the new Python installation can find OpenCV.

6.	 A final step is necessary if we want Python scripts to run using the new
Python installation by default. Edit the system's Path variable and append
;C:\Python2.7 (assuming we installed Python 2.7 to the default location).
Remove any previous Python paths, such as ;C:\Python2.6. Log out and
log back in (alternatively, reboot).

Using CMake and compilers
Windows does not come with any compilers or CMake. We need to install them.
If we want support for depth cameras, including Kinect, we also need to install
OpenNI and SensorKinect.

Let's assume that we have already installed 32-bit Python 2.7, NumPy, and SciPy
either from binaries (as described previously) or from source. Now, we can
proceed with installing compilers and CMake, optionally installing OpenNI and
SensorKinect, and then building OpenCV from source:

1.	 Download and install CMake 2.8.9 from http://www.cmake.org/files/
v2.8/cmake-2.8.9-win32-x86.exe. When running the installer, select
either Add CMake to the system PATH for all users or Add CMake to the
system PATH for current user.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[10]

2.	 Download and install Microsoft Visual Studio 2010, Microsoft Visual C++
Express 2010, or MinGW. Note that OpenCV 2.4.3 cannot be compiled with
the more recent versions (Microsoft Visual Studio 2012 and Microsoft Visual
Studio Express 2012).
For Microsoft Visual Studio 2010, use any installation media you purchased.
During installation, include any optional C++ components. Reboot after
installation is complete.
For Microsoft Visual C++ Express 2010, get the installer from
http://www.microsoft.com/visualstudio/eng/downloads.
Reboot after installation is complete.
For MinGW get the installer from http://sourceforge.net/projects/
mingw/files/Installer/mingw-get-inst/mingw-get-inst-20120426/
mingw-get-inst-20120426.exe/download. When running the installer,
make sure that the destination path does not contain spaces and that the
optional C++ compiler is included. Edit the system's Path variable and
append ;C:\MinGW\bin (assuming MinGW is installed to the default
location.) Reboot the system.

3.	 Optionally, download and install OpenNI 1.5.4.0 from http://www.openni.
org/wp-content/uploads/2012/12/OpenNI-Win32-1.5.4.0-Dev1.zip
(32 bit). Alternatively, for 64-bit Python, use http://www.openni.org/wp-
content/uploads/2012/12/OpenNI-Win64-1.5.4.0-Dev.zip (64 bit).

4.	 Optionally, download and install SensorKinect 0.93 from https://github.
com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-
Win32-v5.1.2.1.msi?raw=true (32 bit). Alternatively, for 64-bit Python,
use https://github.com/avin2/SensorKinect/blob/unstable/Bin/
SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true (64 bit).

5.	 Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

6.	 Open Command Prompt and make another folder where our build will go:
> mkdir<build_folder>

Change directory to the build folder:
> cd <build_folder>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

7.	 Now, we are ready to configure our build. To understand all the options, we
could read the code in <unzip_destination>\opencv\CMakeLists.txt.
However, for this book's purposes, we only need to use the options that will
give us a release build with Python bindings and, optionally, depth camera
support via OpenNI and SensorKinect.
For Visual Studio 2010 or Visual C++ Express 2010, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G "Visual
Studio 10" <unzip_destination>\opencv

Alternatively, for MinGW, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G
"MinGWMakefiles" <unzip_destination>\opencv

If OpenNI is not installed, omit -D:WITH_OPENNI=ON. (In this case, depth
cameras will not be supported.) If OpenNI and SensorKinect are installed
to non-default locations, modify the command to include -D:OPENNI_
LIB_DIR=<openni_install_destination>\Lib -D:OPENNI_INCLUDE_
DIR=<openni_install_destination>\Include -D:OPENNI_PRIME_SENSOR_
MODULE_BIN_DIR=<sensorkinect_install_destination>\Sensor\Bin.
CMake might report that it has failed to find some dependencies. Many of
OpenCV's dependencies are optional; so, do not be too concerned yet. If the
build fails to complete or you run into problems later, try installing missing
dependencies (often available as prebuilt binaries) and then rebuild OpenCV
from this step.

8.	 Having configured our build system, we are ready to compile.
For Visual Studio or Visual C++ Express, open <build_folder>/OpenCV.
sln. Select Release configuration and build. If you get build errors, double-
check that Release configuration is selected.
Alternatively, for MinGW, run:
> mingw32-make.

9.	 Copy <build_folder>\lib\Release\cv2.pyd (from a Visual Studio build)
or <build_folder>\lib\cv2.pyd (from a MinGW build) to C:\Python2.7\
Lib\site-packages (assuming Python 2.7 is installed to the default
location). Now, the Python installation can find part of OpenCV.

10.	 Finally, we need to make sure that Python and other processes can find
the rest of OpenCV. Edit the system's Path variable and append ;<build_
folder>/bin/Release (for a Visual Studio build) or ;<build_folder>/bin
(for a MinGW build). Reboot your system.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[12]

Making the choice on Mac OS X Snow
Leopard, Mac OS X Lion, or Mac OS X
Mountain Lion
Some versions of Mac come with Python 2.7 preinstalled. However, the preinstalled
Python is customized by Apple for the system's internal needs. Normally, we should
not install any libraries atop Apple's Python. If we do, our libraries might break
during system updates or, worse, might conflict with preinstalled libraries that the
system requires. Instead, we should install standard Python 2.7 and then install our
libraries atop it.

For Mac, there are several possible approaches to obtaining standard Python 2.7,
NumPy, SciPy, and OpenCV. All approaches ultimately require OpenCV to be
compiled from source using Xcode Developer Tools. However, depending on the
approach, this task is automated for us by third-party tools in various ways. We will
look at approaches using MacPorts or Homebrew. These tools can potentially do
everything that CMake can do, plus they help us resolve dependencies and separate
our development libraries from the system libraries.

I recommend MacPorts, especially if you want to compile
OpenCV with depth camera support via OpenNI and
SensorKinect. Relevant patches and build scripts, including
some that I maintain, are ready-made for MacPorts. By contrast,
Homebrew does not currently provide a ready-made solution for
compiling OpenCV with depth camera support.

Before proceeding, let's make sure that the Xcode Developer Tools are properly
set up:

1.	 Download and install Xcode from the Mac App Store or http://connect.
apple.com/. During installation, if there is an option to install Command
Line Tools, select it.

2.	 Open Xcode and accept the license agreement.
3.	 A final step is necessary if the installer did not give us the option to install

Command Line Tools. Go to Xcode | Preferences | Downloads and click on
the Install button next to Command Line Tools. Wait for the installation to
finish and quit Xcode.

Now we have the required compilers for any approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Using MacPorts with ready-made packages
We can use the MacPorts package manager to help us set up Python 2.7, NumPy,
and OpenCV. MacPorts provides Terminal commands that automate the process
of downloading, compiling, and installing various pieces of open source software
(OSS). MacPorts also installs dependencies as needed. For each piece of software, the
dependencies and build recipe are defined in a configuration file called a Portfile. A
MacPorts repository is a collection of Portfiles.

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via MacPorts:

1.	 Download and install MacPorts from
http://www.macports.org/install.php.

2.	 If we want support for the Kinect depth camera, we need to tell MacPorts
where to download some custom Portfiles that I have written. To do so, edit
/opt/local/etc/macports/sources.conf (assuming MacPorts is installed
to the default location). Just above the line rsync://rsync.macports.org/
release/ports/ [default], add the following line:
http://nummist.com/opencv/ports.tar.gz

Save the file. Now, MacPorts knows to search for Portfiles in my online
repository first and, then, the default online repository.

3.	 Open Terminal and run the following command to update MacPorts:
$ sudo port selfupdate

When prompted, enter your password.

4.	 Now (if we are using my repository), run the following command to
install OpenCV with Python 2.7 bindings and support for depth
cameras including Kinect:
$ sudo port install opencv +python27 +openni_sensorkinect

Alternatively (with or without my repository), run the following command
to install OpenCV with Python 2.7 bindings and support for depth cameras
excluding Kinect:
$ sudo port install opencv +python27 +openni

Dependencies, including Python 2.7, NumPy, OpenNI, and (in the first
example) SensorKinect, are automatically installed as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[14]

By adding +python27 to the command, we are specifying that we want the
opencv variant (build configuration) with Python 2.7 bindings. Similarly,
+openni_sensorkinect specifies the variant with the broadest possible
support for depth cameras via OpenNI and SensorKinect. You may omit
+openni_sensorkinect if you do not intend to use depth cameras or you
may replace it with +openni if you do intend to use OpenNI-compatible
depth cameras but just not Kinect. To see the full list of available variants
before installing, we can enter:
$ port variants opencv

Depending on our customization needs, we can add other variants to the
install command. For even more flexibility, we can write our own variants
(as described in the next section).

5.	 Also, run the following command to install SciPy:
$ sudo port install py27-scipy

6.	 The Python installation's executable is named python2.7. If we want to link
the default python executable to python2.7, let's also run:
$ sudo port install python_select

$ sudo port select python python27

Using MacPorts with your own custom packages
With a few extra steps, we can change the way that MacPorts compiles OpenCV or
any other piece of software. As previously mentioned, MacPorts' build recipes are
defined in configuration files called Portfiles. By creating or editing Portfiles, we can
access highly configurable build tools, such as CMake, while also benefitting from
MacPorts' features, such as dependency resolution.

Let's assume that we already have MacPorts installed. Now, we can configure
MacPorts to use custom Portfiles that we write:

1.	 Create a folder somewhere to hold our custom Portfiles. We will refer to this
folder as <local_repository>.

2.	 Edit the file /opt/local/etc/macports/sources.conf (assuming MacPorts
is installed to the default location). Just above the line rsync://rsync.
macports.org/release/ports/ [default], add this line:
file://<local_repository>

For example, if <local_repository> is /Users/Joe/Portfiles, add:
file:///Users/Joe/Portfiles

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Note the triple slashes.
Save the file. Now, MacPorts knows to search for Portfiles in
<local_repository> first and, then, its default online repository.

3.	 Open Terminal and update MacPorts to ensure that we have the latest
Portfiles from the default repository:
$ sudo port selfupdate

4.	 Let's copy the default repository's opencv Portfile as an example. We should
also copy the directory structure, which determines how the package is
categorized by MacPorts.
$ mkdir <local_repository>/graphics/
$ cp /opt/local/var/macports/sources/rsync.macports.org/release/
ports/graphics/opencv <local_repository>/graphics

Alternatively, for an example that includes Kinect support, we could download
my online repository from http://nummist.com/opencv/ports.tar.gz,
unzip it and copy its entire graphics folder into <local_repository>:
$ cp <unzip_destination>/graphics <local_repository>

5.	 Edit <local_repository>/graphics/opencv/Portfile. Note that this file
specifies CMake configuration flags, dependencies, and variants. For details
on Portfile editing, go to http://guide.macports.org/#development.
To see which CMake configuration flags are relevant to OpenCV, we
need to look at its source code. Download the source code archive from
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download, unzip it to any location,
and read <unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the Portfile, save it.

6.	 Now, we need to generate an index file in our local repository so that
MacPorts can find the new Portfile:
$ cd <local_repository>

$ portindex

7.	 From now on, we can treat our custom opencv just like any other MacPorts
package. For example, we can install it as follows:
$ sudo port install opencv +python27 +openni_sensorkinect

Note that our local repository's Portfile takes precedence over the
default repository's Portfile because of the order in which they are
listed in /opt/local/etc/macports/sources.conf.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[16]

Using Homebrew with ready-made packages
(no support for depth cameras)
Homebrew is another package manager that can help us. Normally, MacPorts and
Homebrew should not be installed on the same machine.

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via Homebrew:

1.	 Open Terminal and run the following command to install Homebrew:
$ ruby -e "$(curl -fsSkLraw.github.com/mxcl/homebrew/go)"

2.	 Unlike MacPorts, Homebrew does not automatically put its executables in
PATH. To do so, create or edit the file ~/.profile and add this line at the top:
export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Save the file and run this command to refresh PATH:
$ source ~/.profile

Note that executables installed by Homebrew now take precedence over
executables installed by the system.

3.	 For Homebrew's self-diagnostic report, run:
$ brew doctor

Follow any troubleshooting advice it gives.

4.	 Now, update Homebrew:
$ brew update

5.	 Run the following command to install Python 2.7:
$ brew install python

6.	 Now, we can install NumPy. Homebrew's selection of Python library
packages is limited so we use a separate package management tool
called pip, which comes with Homebrew's Python:
$ pip install numpy

7.	 SciPy contains some Fortran code, so we need an appropriate compiler.
We can use Homebrew to install the gfortran compiler:
$ brew install gfortran

Now, we can install SciPy:
$ pip install scipy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

8.	 To install OpenCV on a 64-bit system (all new Mac hardware since late 2006),
run:
$ brew install opencv

Alternatively, to install OpenCV on a 32-bit system, run:
$ brew install opencv --build32

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Using Homebrew with your own custom packages
Homebrew makes it easy to edit existing package definitions:

$ brew edit opencv

The package definitions are actually scripts in the Ruby programming language.
Tips on editing them can be found in the Homebrew wiki at https://github.com/
mxcl/homebrew/wiki/Formula-Cookbook. A script may specify Make or CMake
configuration flags, among other things.

To see which CMake configuration flags are relevant to OpenCV, we need to look at
its source code. Download the source code archive from http://sourceforge.net/
projects/opencvlibrary/files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download, unzip it to any location, and read <unzip_destination>/OpenCV-2.4.3/
CMakeLists.txt.

After making any edits to the Ruby script, save it.

The customized package can be treated as normal. For example, it can be installed
as follows:

$ brew install opencv

Making the choice on Ubuntu 12.04 LTS or
Ubuntu 12.10
Ubuntu comes with Python 2.7 preinstalled. The standard Ubuntu repository
contains OpenCV 2.3.1 packages without support for depth cameras. Alternatively,
OpenCV 2.4.3 can be built from source using CMake and GCC. When built from
source, OpenCV can support depth cameras via OpenNI and SensorKinect, which
are available as precompiled binaries with installation scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[18]

Using the Ubuntu repository (no support for depth
cameras)
We can install OpenCV 2.3.1 and its dependencies using the Apt package manager:

1.	 Open Terminal and run this command to update Apt:
$ sudo apt-get update

2.	 Now, run these commands to install NumPy, SciPy, and OpenCV with
Python bindings:
$ sudo apt-get install python-numpy

$ sudo apt-get install python-scipy

$ sudo apt-get install libopencv-*

$ sudo apt-get install python-opencv

Enter Y whenever prompted about package installation.

Equivalently, we could have used Ubuntu Software Center, which is Apt's
graphical frontend.

Using CMake via a ready-made script that you may
customize
Ubuntu comes with the GCC compilers preinstalled. However, we need to install the
CMake build system. We also need to install or reinstall various other libraries, some
of which need to be specially configured for compatibility with OpenCV. Because the
dependencies are complex, I have written a script that downloads, configures, and
builds OpenCV and related libraries so that the resulting OpenCV installation has
support for depth cameras including Kinect:

1.	 Download my installation script from http://nummist.com/opencv/
install_opencv_ubuntu.sh and put it in any destination, say
<script_folder>.

2.	 Optionally, edit the script to customize OpenCV's build configuration. To
see which CMake configuration flags are relevant to OpenCV, we need to
look at its source code. Download the source code archive from http://
sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.3/
OpenCV-2.4.3.tar.bz2/download, unzip it to any location, and read
<unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the script, save it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

3.	 Open Terminal and run this command to update Apt:
$ sudo apt-get update

4.	 Change directory to <script_folder>:
$ cd <script_folder>

Set the script's permissions so that it is executable:
$ chmod +x install_opencv_ubuntu.sh

Execute the script:
$./install_opencv_ubuntu.sh

When prompted, enter your password. Enter Y whenever prompted about
package installation.

5.	 The installation script creates a folder, <script_folder>/opencv, which
contains downloads and built files that are temporarily used by the script.
After the installation script terminates, <script_folder>/opencv may
safely be deleted; although, first, you might want to look at OpenCV's
Python samples in <script_folder>/opencv/samples/python and
<script_folder>/opencv/samples/python2.

Making the choice on other Unix-like systems
The approaches for Ubuntu (as described previously) are likely to work on any
Linux distribution derived from Ubuntu 12.04 LTS or Ubuntu 12.10, such as:

•	 Kubuntu 12.04 LTS or Kubuntu 12.10
•	 Xubuntu 12.04 LTS or Xubuntu 12.10
•	 Linux Mint 13 or Linux Mint 14

On Debian Linux and its derivatives, the Apt package manager works the same as on
Ubuntu, though the available packages may differ.

On Gentoo Linux and its derivatives, the Portage package manager is similar to
MacPorts (as described previously), though the available packages may differ.

On other Unix-like systems, the package manager and available packages may differ.
Consult your package manager's documentation and search for any packages with
opencv in their names. Remember that OpenCV and its Python bindings might be
split into multiple packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[20]

Also, look for any installation notes published by the system provider, the repository
maintainer, or the community. Because OpenCV uses camera drivers and media
codecs, getting all of its functionality to work can be tricky on systems with poor
multimedia support. Under some circumstances, system packages might need to
be reconfigured or reinstalled for compatibility.

If packages are available for OpenCV, check their version number. OpenCV 2.3.1
or greater is recommended for this book's purposes. Also check whether the
packages offer Python bindings and whether they offer depth camera support
via OpenNI and SensorKinect. Finally, check whether anyone in the developer
community has reported success or failure in using the packages.

If instead we want to do a custom build of OpenCV from source, it might be helpful
to refer to the installation script for Ubuntu (discussed previously) and adapt it to the
package manager and packages that are present on another system.

Running samples
Running a few sample scripts is a good way to test that OpenCV is correctly set up.
The samples are included in OpenCV's source code archive.

On Windows, we should have already downloaded and unzipped OpenCV's
self-extracting ZIP. Find the samples in <unzip_destination>/opencv/samples.

On Unix-like systems, including Mac, download the source code archive from
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download and unzip it to any location
(if we have not already done so). Find the samples in <unzip_destination>/
OpenCV-2.4.3/samples.

Some of the sample scripts require command-line arguments. However, the
following scripts (among others) should work without any arguments:

•	 python/camera.py: This displays a webcam feed (assuming a webcam is
plugged in).

•	 python/drawing.py: This draws a series of shapes, like a screensaver.
•	 python2/hist.py: This displays a photo. Press A, B, C, D, or E to see

variations of the photo, along with a corresponding histogram of color
or grayscale values.

•	 python2/opt_flow.py (missing from the Ubuntu package): This displays
a webcam feed with a superimposed visualization of optical flow (direction
of motion). For example, slowly wave your hand at the webcam to see the
effect. Press 1 or 2 for alternative visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

To exit a script, press Esc (not the window's close button).

If we encounter the message, ImportError: No module named cv2.cv, then we
are running the script from a Python installation that does not know anything about
OpenCV. There are two possible explanations:

•	 Some steps in the OpenCV installation might have failed or been missed. Go
back and review the steps.

•	 If we have multiple Python installations on the machine, we might be using
the wrong Python to launch the script. For example, on Mac, it might be the
case that OpenCV is installed for MacPorts Python but we are running the
script with the system's Python. Go back and review the installation steps
about editing the system path. Also, try launching the script manually from
the command line using commands such as:

$ python python/camera.py

You can also use the following command:
$ python2.7 python/camera.py

As another possible means of selecting a different Python installation, try
editing the sample script to remove #! lines. These lines might explicitly
associate the script with the wrong Python installation (for our particular setup).

Finding documentation, help, and
updates
OpenCV's documentation is online at http://docs.opencv.org/. The documentation
includes a combined API reference for OpenCV's new C++ API, its new Python API
(which is based on the C++ API), its old C API, and its old Python API (which is based
on the C API). When looking up a class or function, be sure to read the section about
the new Python API (cv2 module), not the old Python API (cv module).

The documentation entitled OpenCV 2.1 Python Reference
(http://opencv.willowgarage.com/documentation/python/)
might show up in Google searches for OpenCV Python API. Avoid
this documentation, since it is out-of-date and covers only the old
(C-like) Python API.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up OpenCV

[22]

The documentation is also available as several downloadable PDF files:

•	 API reference: http://docs.opencv.org/opencv2refman
•	 Tutorials: http://docs.opencv.org/opencv_tutorials

(These tutorials use C++ code. For a Python port of the tutorials'
code, see Abid Rahman K.'s repository at http://goo.gl/EPsD1.)

•	 User guide (incomplete): http://docs.opencv.org/opencv_user

If you write code on airplanes or other places without Internet access, you will
definitely want to keep offline copies of the documentation.

If the documentation does not seem to answer your question, try talking to the
OpenCV community. Here are some sites where you will find helpful people:

•	 Official OpenCV forum: http://www.answers.opencv.org/questions/
•	 Blog of David Millán Escrivá (one of this book's reviewers):

http://blog.damiles.com/

•	 Blog of Abid Rahman K. (one of this book's reviewers):
http://www.opencvpython.blogspot.com/

•	 My site for this book: http://nummist.com/opencv/

Last, if you are an advanced user who wants to try new features, bug-fixes, and
sample scripts from the latest (unstable) OpenCV source code, have a look at the
project's repository at https://github.com/Itseez/opencv/.

Summary
By now, we should have an OpenCV installation that can do everything we need for
the project described in this book. Depending on which approach we took, we might
also have a set of tools and scripts that are usable to reconfigure and rebuild OpenCV
for our future needs.

We know where to find OpenCV's Python samples. These samples cover a different
range of functionality than this book's project, but they are useful as additional
learning aids.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras,
and GUIs

This chapter introduces OpenCV's I/O functionality. We also discuss a project
concept and the beginnings of an object-oriented design for this project, which we
will flesh out in subsequent chapters.

By starting with a look at I/O capabilities and design patterns, we are building our
project in the same way we would make a sandwich: from the outside in. Bread slices
and spread or endpoints and glue, come before fillings or algorithms. We choose this
approach because computer vision is extroverted—it contemplates the real world
outside our computer—and we want to apply all our subsequent, algorithmic work
to the real world through a common interface.

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_02.zip.

Basic I/O scripts
All CV applications need to get images as input. Most also need to produce images
as output. An interactive CV application might require a camera as an input
source and a window as a output destination. However, other possible sources
and destinations include image files, video files, and raw bytes. For example, raw
bytes might be received/sent via a network connection or might be generated by an
algorithm if we are incorporating procedural graphics into our application. Let's look
at each of these possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[24]

Reading/Writing an image file
OpenCV provides the imread() and imwrite() functions that support various file
formats for still images. The supported formats vary by system but should always
include the BMP format. Typically, PNG, JPEG, and TIFF should be among the
supported formats too. Images can be loaded from one file format and saved to
another. For example, let's convert an image from PNG to JPEG:

import cv2

image = cv2.imread('MyPic.png')
cv2.imwrite('MyPic.jpg', image)

Most of the OpenCV functionality that we use is in the cv2 module.
You might come across other OpenCV guides that instead rely on the
cv or cv2.cv modules, which are legacy versions. We do use cv2.cv
for certain constants that are not yet redefined in cv2.

By default, imread() returns an image in BGR color format, even if the file uses a
grayscale format. BGR (blue-green-red) represents the same color space as RGB
(red-green-blue) but the byte order is reversed.

Optionally, we may specify the mode of imread() to be CV_LOAD_IMAGE_COLOR
(BGR), CV_LOAD_IMAGE_GRAYSCALE (grayscale), or CV_LOAD_IMAGE_UNCHANGED
(either BGR or grayscale, depending on the file's color space). For example, let's load
a PNG as a grayscale image (losing any color information in the process) and, then,
save it as a grayscale PNG image:

import cv2

grayImage = cv2.imread('MyPic.png', cv2.CV_LOAD_IMAGE_GRAYSCALE)
cv2.imwrite('MyPicGray.png', grayImage)

Regardless of the mode, imread() discards any alpha channel (transparency). The
imwrite() function requires an image to be in BGR or grayscale format with a
number of bits per channel that the output format can support. For example, bmp
requires 8 bits per channel while PNG allows either 8 or 16 bits per channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Converting between an image and raw bytes
Conceptually, a byte is an integer ranging from 0 to 255. Throughout real-time
graphics applications today, a pixel is typically represented by one byte per
channel, though other representations are also possible.

An OpenCV image is a 2D or 3D array of type numpy.array. An 8-bit grayscale
image is a 2D array containing byte values. A 24-bit BGR image is a 3D array, also
containing byte values. We may access these values by using an expression like
image[0, 0] or image[0, 0, 0]. The first index is the pixel's y coordinate, or row,
0 being the top. The second index is the pixel's x coordinate, or column, 0 being the
leftmost. The third index (if applicable) represents a color channel.

For example, in an 8-bit grayscale image with a white pixel in the upper-left corner,
image[0, 0] is 255. For a 24-bit BGR image with a blue pixel in the upper-left
corner, image[0, 0] is [255, 0, 0].

As an alternative to using an expression like image[0, 0] or
image[0, 0] = 128, we may use an expression like image.
item((0, 0)) or image.setitem((0, 0), 128). The latter
expressions are more efficient for single-pixel operations. However,
as we will see in subsequent chapters, we usually want to perform
operations on large slices of an image rather than single pixels.

Provided that an image has 8 bits per channel, we can cast it to a standard Python
bytearray, which is one-dimensional:

byteArray = bytearray(image)

Conversely, provided that bytearray contains bytes in an appropriate order, we can
cast and then reshape it to get a numpy.array type that is an image:

grayImage = numpy.array(grayByteArray).reshape(height, width)
bgrImage = numpy.array(bgrByteArray).reshape(height, width, 3)

As a more complete example, let's convert bytearray containing random bytes to a
grayscale image and a BGR image:

import cv2
import numpy
import os

Make an array of 120,000 random bytes.
randomByteArray = bytearray(os.urandom(120000))

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[26]

flatNumpyArray = numpy.array(randomByteArray)

Convert the array to make a 400x300 grayscale image.
grayImage = flatNumpyArray.reshape(300, 400)
cv2.imwrite('RandomGray.png', grayImage)

Convert the array to make a 400x100 color image.
bgrImage = flatNumpyArray.reshape(100, 400, 3)
cv2.imwrite('RandomColor.png', bgrImage)

After running this script, we should have a pair of randomly generated images,
RandomGray.png and RandomColor.png, in the script's directory.

Here, we use Python's standard os.urandom() function to generate
random raw bytes, which we then convert to a Numpy array. Note
that it is also possible to generate a random Numpy array directly
(and more efficiently) using a statement such as numpy.random.
randint(0, 256, 120000).reshape(300, 400). The
only reason we are using os.urandom() is to help demonstrate
conversion from raw bytes.

Reading/Writing a video file
OpenCV provides the VideoCapture and VideoWriter classes that support various
video file formats. The supported formats vary by system but should always include
AVI. Via its read() method, a VideoCapture class may be polled for new frames until
reaching the end of its video file. Each frame is an image in BGR format. Conversely,
an image may be passed to the write() method of the VideoWriter class, which
appends the image to the file in VideoWriter. Let's look at an example that reads
frames from one AVI file and writes them to another AVI file with YUV encoding:

import cv2

videoCapture = cv2.VideoCapture('MyInputVid.avi')
fps = videoCapture.get(cv2.cv.CV_CAP_PROP_FPS)
size = (int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
 'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = videoCapture.read()
while success: # Loop until there are no more frames.
 videoWriter.write(frame)
 success, frame = videoCapture.read()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The arguments to VideoWriter class' constructor deserve special attention.
The video's filename must be specified. Any preexisting file with that name is
overwritten. A video codec must also be specified. The available codecs may vary
from system to system. Options include:

•	 cv2.cv.CV_FOURCC('I','4','2','0'): This is an uncompressed YUV, 4:2:0
chroma subsampled. This encoding is widely compatible but produces large
files. The file extension should be avi.

•	 cv2.cv.CV_FOURCC('P','I','M','1'): This is MPEG-1. The file extension
should be avi.

•	 cv2.cv.CV_FOURCC('M','J','P','G'): This is motion-JPEG. The file
extension should be avi.

•	 cv2.cv.CV_FOURCC('T','H','E','O'): This is Ogg-Vorbis. The file
extension should be ogv.

•	 cv2.cv.CV_FOURCC('F','L','V','1'): This is Flash video. The file
extension should be flv.

A frame rate and frame size must be specified, too. Since we are copying from
another video, these properties can be read from our get() method of the
VideoCapture class.

Capturing camera frames
A stream of camera frames is represented by the VideoCapture class, too.
However, for a camera, we construct a VideoCapture class by passing the
camera's device index instead of a video's filename. Let's consider an example
that captures 10 seconds of video from a camera and writes it to an AVI file:

import cv2

cameraCapture = cv2.VideoCapture(0)
fps = 30 # an assumption
size = (int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
 'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = cameraCapture.read()
numFramesRemaining = 10 * fps - 1
while success and numFramesRemaining > 0:
 videoWriter.write(frame)
 success, frame = cameraCapture.read()
 numFramesRemaining -= 1

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[28]

Unfortunately, the get() method of a VideoCapture class does not return an
accurate value for the camera's frame rate; it always returns 0. For the purpose of
creating an appropriate VideoWriter class for the camera, we have to either make
an assumption about the frame rate (as we did in the code previously) or measure it
using a timer. The latter approach is better and we will cover it later in this chapter.

The number of cameras and their ordering is of course system-dependent.
Unfortunately, OpenCV does not provide any means of querying the number of
cameras or their properties. If an invalid index is used to construct a VideoCapture
class, the VideoCapture class will not yield any frames; its read() method will
return (false, None).

The read() method is inappropriate when we need to synchronize a set of cameras
or a multi-head camera (such as a stereo camera or a Kinect). Then, we use the
grab() and retrieve() methods instead. For a set of cameras:

success0 = cameraCapture0.grab()
success1 = cameraCapture1.grab()
if success0 and success1:
 frame0 = cameraCapture0.retrieve()
 frame1 = cameraCapture1.retrieve()

For a multi-head camera, we must specify a head's index as an argument
to retrieve():

success = multiHeadCameraCapture.grab()
if success:
 frame0 = multiHeadCameraCapture.retrieve(channel = 0)
 frame1 = multiHeadCameraCapture.retrieve(channel = 1)

We will study multi-head cameras in more detail in Chapter 5, Detecting Foreground/
Background Regions and Depth.

Displaying camera frames in a window
OpenCV allows named windows to be created, redrawn, and destroyed using the
namedWindow(), imshow(), and destroyWindow() functions. Also, any window
may capture keyboard input via the waitKey() function and mouse input via the
setMouseCallback() function. Let's look at an example where we show frames of
live camera input:

import cv2

clicked = False
def onMouse(event, x, y, flags, param):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 global clicked
 if event == cv2.cv.CV_EVENT_LBUTTONUP:
 clicked = True

cameraCapture = cv2.VideoCapture(0)
cv2.namedWindow('MyWindow')
cv2.setMouseCallback('MyWindow', onMouse)

print 'Showing camera feed. Click window or press any key to stop.'
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1 and not clicked:
 cv2.imshow('MyWindow', frame)
 success, frame = cameraCapture.read()

cv2.destroyWindow('MyWindow')

The argument to waitKey() is a number of milliseconds to wait for keyboard input.
The return value is either -1 (meaning no key has been pressed) or an ASCII keycode,
such as 27 for Esc. For a list of ASCII keycodes, see http://www.asciitable.com/.
Also, note that Python provides a standard function, ord(), which can convert a
character to its ASCII keycode. For example, ord('a') returns 97.

On some systems, waitKey() may return a value that encodes more
than just the ASCII keycode. (A bug is known to occur on Linux when
OpenCV uses GTK as its backend GUI library.) On all systems, we can
ensure that we extract just the ASCII keycode by reading the last byte
from the return value, like this:

keycode = cv2.waitKey(1)
if keycode != -1:
 keycode &= 0xFF

OpenCV's window functions and waitKey() are interdependent. OpenCV windows
are only updated when waitKey() is called, and waitKey() only captures input
when an OpenCV window has focus.

The mouse callback passed to setMouseCallback() should take five arguments, as
seen in our code sample. The callback's param argument is set as an optional third
argument to setMouseCallback(). By default, it is 0. The callback's event argument
is one of the following:

•	 cv2.cv.CV_EVENT_MOUSEMOVE: Mouse movement
•	 cv2.cv.CV_EVENT_LBUTTONDOWN: Left button down
•	 cv2.cv.CV_EVENT_RBUTTONDOWN: Right button down

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[30]

•	 cv2.cv.CV_EVENT_MBUTTONDOWN: Middle button down
•	 cv2.cv.CV_EVENT_LBUTTONUP: Left button up
•	 cv2.cv.CV_EVENT_RBUTTONUP: Right button up
•	 cv2.cv.CV_EVENT_MBUTTONUP: Middle button up
•	 cv2.cv.CV_EVENT_LBUTTONDBLCLK: Left button double-click
•	 cv2.cv.CV_EVENT_RBUTTONDBLCLK: Right button double-click
•	 cv2.cv.CV_EVENT_MBUTTONDBLCLK: Middle button double-click

The mouse callback's flags argument may be some bitwise combination of
the following:

•	 cv2.cv.CV_EVENT_FLAG_LBUTTON: The left button pressed
•	 cv2.cv.CV_EVENT_FLAG_RBUTTON: The right button pressed
•	 cv2.cv.CV_EVENT_FLAG_MBUTTON: The middle button pressed
•	 cv2.cv.CV_EVENT_FLAG_CTRLKEY: The Ctrl key pressed
•	 cv2.cv.CV_EVENT_FLAG_SHIFTKEY: The Shift key pressed
•	 cv2.cv.CV_EVENT_FLAG_ALTKEY: The Alt key pressed

Unfortunately, OpenCV does not provide any means of handling window events.
For example, we cannot stop our application when the window's close button
is clicked. Due to OpenCV's limited event handling and GUI capabilities, many
developers prefer to integrate it with another application framework. Later in this
chapter, we will design an abstraction layer to help integrate OpenCV into any
application framework.

Project concept
OpenCV is often studied through a cookbook approach that covers a lot of
algorithms but nothing about high-level application development. To an extent, this
approach is understandable because OpenCV's potential applications are so diverse.
For example, we could use it in a photo/video editor, a motion-controlled game, a
robot's AI, or a psychology experiment where we log participants' eye movements.
Across such different use cases, can we truly study a useful set of abstractions?

I believe we can and the sooner we start creating abstractions, the better. We will
structure our study of OpenCV around a single application, but, at each step, we
will design a component of this application to be extensible and reusable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

We will develop an interactive application that performs face tracking and image
manipulations on camera input in real time. This type of application covers a broad
range of OpenCV's functionality and challenges us to create an efficient, effective
implementation. Users would immediately notice flaws, such as a low frame rate
or inaccurate tracking. To get the best results, we will try several approaches using
conventional imaging and depth imaging.

Specifically, our application will perform real-time facial merging. Given two
streams of camera input (or, optionally, prerecorded video input), the application
will superimpose faces from one stream atop faces in the other. Filters and
distortions will be applied to give the blended scene a unified look and feel. Users
should have the experience of being engaged in a live performance where they enter
another environment and another persona. This type of user experience is popular in
amusement parks such as Disneyland.

We will call our application Cameo. A cameo is (in jewelry) a small portrait of a
person or (in film) a very brief role played by a celebrity.

An object-oriented design
Python applications can be written in a purely procedural style. This is often done
with small applications like our basic I/O scripts, discussed previously. However,
from now on, we will use an object-oriented style because it promotes modularity
and extensibility.

From our overview of OpenCV's I/O functionality, we know that all images are
similar, regardless of their source or destination. No matter how we obtain a stream
of images or where we send it as output, we can apply the same application-specific
logic to each frame in this stream. Separation of I/O code and application code
becomes especially convenient in an application like Cameo, which uses multiple
I/O streams.

We will create classes called CaptureManager and WindowManager as high-level
interfaces to I/O streams. Our application code may use a CaptureManager to
read new frames and, optionally, to dispatch each frame to one or more outputs,
including a still image file, a video file, and a window (via a WindowManager class).
A WindowManager class lets our application code handle a window and events in an
object-oriented style.

Both CaptureManager and WindowManager are extensible. We could make
implementations that did not rely on OpenCV for I/O. Indeed, Appendix A,
Integrating with Pygame uses a WindowManager subclass.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[32]

Abstracting a video stream –
managers.CaptureManager
As we have seen, OpenCV can capture, show, and record a stream of images from
either a video file or a camera, but there are some special considerations in each
case. Our CaptureManager class abstracts some of the differences and provides a
higher-level interface for dispatching images from the capture stream to one or more
outputs—a still image file, a video file, or a window.

A CaptureManager class is initialized with a VideoCapture class and has the
enterFrame() and exitFrame() methods that should typically be called on every
iteration of an application's main loop. Between a call to enterFrame() and a call
to exitFrame(), the application may (any number of times) set a channel property
and get a frame property. The channel property is initially 0 and only multi-head
cameras use other values. The frame property is an image corresponding to the
current channel's state when enterFrame() was called.

A CaptureManager class also has writeImage(), startWritingVideo(), and
stopWritingVideo() methods that may be called at any time. Actual file writing
is postponed until exitFrame(). Also during the exitFrame() method, the frame
property may be shown in a window, depending on whether the application
code provides a WindowManager class either as an argument to the constructor of
CaptureManager or by setting a property, previewWindowManager.

If the application code manipulates frame, the manipulations are reflected in
any recorded files and in the window. A CaptureManager class has a constructor
argument and a property called shouldMirrorPreview, which should be True
if we want frame to be mirrored (horizontally flipped) in the window but not in
recorded files. Typically, when facing a camera, users prefer the live camera feed to
be mirrored.

Recall that a VideoWriter class needs a frame rate, but OpenCV does not provide
any way to get an accurate frame rate for a camera. The CaptureManager class works
around this limitation by using a frame counter and Python's standard time.time()
function to estimate the frame rate if necessary. This approach is not foolproof.
Depending on frame rate fluctuations and the system-dependent implementation
of time.time(), the accuracy of the estimate might still be poor in some cases.
However, if we are deploying to unknown hardware, it is better than just assuming
that the user's camera has a particular frame rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Let's create a file called managers.py, which will contain our implementation of
CaptureManager. The implementation turns out to be quite long. So, we will look at
it in several pieces. First, let's add imports, a constructor, and properties, as follows:

import cv2
import numpy
import time

class CaptureManager(object):

 def __init__(self, capture, previewWindowManager = None,
 shouldMirrorPreview = False):

 self.previewWindowManager = previewWindowManager
 self.shouldMirrorPreview = shouldMirrorPreview

 self._capture = capture
 self._channel = 0
 self._enteredFrame = False
 self._frame = None
 self._imageFilename = None
 self._videoFilename = None
 self._videoEncoding = None
 self._videoWriter = None

 self._startTime = None
 self._framesElapsed = long(0)
 self._fpsEstimate = None

 @property
 def channel(self):
 return self._channel

 @channel.setter
 def channel(self, value):
 if self._channel != value:
 self._channel = value
 self._frame = None

 @property
 def frame(self):

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[34]

 if self._enteredFrame and self._frame is None:
 _, self._frame = self._capture.retrieve(
 channel = self.channel)
 return self._frame

 @property
 def isWritingImage (self):

 return self._imageFilename is not None

 @property
 def isWritingVideo(self):
 return self._videoFilename is not None

Note that most of the member variables are non-public, as denoted by the underscore
prefix in variable names, such as self._enteredFrame. These non-public variables
relate to the state of the current frame and any file writing operations. As previously
discussed, application code only needs to configure a few things, which are
implemented as constructor arguments and settable public properties: the camera
channel, the window manager, and the option to mirror the camera preview.

By convention, in Python, variables that are prefixed with a single
underscore should be treated as protected (accessed only within the
class and its subclasses), while variables that are prefixed with a double
underscore should be treated as private (accessed only within the class).

Continuing with our implementation, let's add the enterFrame() and exitFrame()
methods to managers.py:

 def enterFrame(self):
 """Capture the next frame, if any."""

 # But first, check that any previous frame was exited.
 assert not self._enteredFrame, \
 'previous enterFrame() had no matching exitFrame()'

 if self._capture is not None:
 self._enteredFrame = self._capture.grab()

 def exitFrame (self):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

 """Draw to the window. Write to files. Release the frame."""

 # Check whether any grabbed frame is retrievable.
 # The getter may retrieve and cache the frame.
 if self.frame is None:
 self._enteredFrame = False
 return

 # Update the FPS estimate and related variables.
 if self._framesElapsed == 0:
 self._startTime = time.time()
 else:
 timeElapsed = time.time() - self._startTime
 self._fpsEstimate = self._framesElapsed / timeElapsed
 self._framesElapsed += 1

 # Draw to the window, if any.
 if self.previewWindowManager is not None:
 if self.shouldMirrorPreview:
 mirroredFrame = numpy.fliplr(self._frame).copy()
 self.previewWindowManager.show(mirroredFrame)
 else:
 self.previewWindowManager.show(self._frame)

 # Write to the image file, if any.
 if self.isWritingImage:
 cv2.imwrite(self._imageFilename, self._frame)
 self._imageFilename = None

 # Write to the video file, if any.
 self._writeVideoFrame()

 # Release the frame.
 self._frame = None
 self._enteredFrame = False

Note that the implementation of enterFrame() only grabs (synchronizes) a frame,
whereas actual retrieval from a channel is postponed to a subsequent reading of
the frame variable. The implementation of exitFrame() takes the image from the
current channel, estimates a frame rate, shows the image via the window manager
(if any), and fulfills any pending requests to write the image to files.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[36]

Several other methods also pertain to file writing. To finish our class implementation,
let's add the remaining file-writing methods to managers.py:

 def writeImage(self, filename):
 """Write the next exited frame to an image file."""
 self._imageFilename = filename

 def startWritingVideo(
 self, filename,
 encoding = cv2.cv.CV_FOURCC('I','4','2','0')):
 """Start writing exited frames to a video file."""
 self._videoFilename = filename
 self._videoEncoding = encoding

 def stopWritingVideo (self):
 """Stop writing exited frames to a video file."""
 self._videoFilename = None
 self._videoEncoding = None
 self._videoWriter = None

def _writeVideoFrame(self):

 if not self.isWritingVideo:
 return

 if self._videoWriter is None:
 fps = self._capture.get(cv2.cv.CV_CAP_PROP_FPS)
 if fps == 0.0:
 # The capture's FPS is unknown so use an estimate.
 if self._framesElapsed < 20:
 # Wait until more frames elapse so that the
 # estimate is more stable.
 return
 else:
 fps = self._fpsEstimate
 size = (int(self._capture.get(
 cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(self._capture.get(
 cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
 self._videoWriter = cv2.VideoWriter(
 self._videoFilename, self._videoEncoding,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

 fps, size)

 self._videoWriter.write(self._frame)

The public methods, writeImage(), startWritingVideo(), and
stopWritingVideo(), simply record the parameters for file writing operations,
whereas the actual writing operations are postponed to the next call of exitFrame().
The non-public method, _writeVideoFrame(), creates or appends to a video file in
a manner that should be familiar from our earlier scripts. (See the Reading/Writing a
video file section.) However, in situations where the frame rate is unknown, we skip
some frames at the start of the capture session so that we have time to build up an
estimate of the frame rate.

Although our current implementation of CaptureManager relies on VideoCapture, we
could make other implementations that do not use OpenCV for input. For example,
we could make a subclass that was instantiated with a socket connection, whose byte
stream could be parsed as a stream of images. Also, we could make a subclass that
used a third-party camera library with different hardware support than what OpenCV
provides. However, for Cameo, our current implementation is sufficient.

Abstracting a window and keyboard –
managers.WindowManager
As we have seen, OpenCV provides functions that cause a window to be created,
be destroyed, show an image, and process events. Rather than being methods of
a window class, these functions require a window's name to pass as an argument.
Since this interface is not object-oriented, it is inconsistent with OpenCV's general
style. Also, it is unlikely to be compatible with other window or event handling
interfaces that we might eventually want to use instead of OpenCV's.

For the sake of object-orientation and adaptability, we abstract this functionality
into a WindowManager class with the createWindow(), destroyWindow(),
show(), and processEvents() methods. As a property, a WindowManager class
has a function object called keypressCallback, which (if not None) is called from
processEvents() in response to any key press. The keypressCallback object must
take a single argument, an ASCII keycode.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[38]

Let's add the following implementation of WindowManager to managers.py:

class WindowManager(object):

 def __init__(self, windowName, keypressCallback = None):
 self.keypressCallback = keypressCallback

 self._windowName = windowName
 self._isWindowCreated = False

 @property
 def isWindowCreated(self):
 return self._isWindowCreated

 def createWindow (self):
 cv2.namedWindow(self._windowName)
 self._isWindowCreated = True

 def show(self, frame):
 cv2.imshow(self._windowName, frame)

 def destroyWindow (self):
 cv2.destroyWindow(self._windowName)
 self._isWindowCreated = False

 def processEvents (self):
 keycode = cv2.waitKey(1)
 if self.keypressCallback is not None and keycode != -1:
 # Discard any non-ASCII info encoded by GTK.
 keycode &= 0xFF
 self.keypressCallback(keycode)

Our current implementation only supports keyboard events, which will be sufficient
for Cameo. However, we could modify WindowManager to support mouse events too.
For example, the class's interface could be expanded to include a mouseCallback
property (and optional constructor argument) but could otherwise remain the same.
With some event framework other than OpenCV's, we could support additional
event types in the same way, by adding callback properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Appendix A, Integrating with Pygame, shows a WindowManager subclass that is
implemented with Pygame's window handling and event framework instead of
OpenCV's. This implementation improves on the base WindowManager class by
properly handling quit events—for example, when the user clicks on the window's
close button. Potentially, many other event types can be handled via Pygame too.

Applying everything – cameo.Cameo
Our application is represented by a class, Cameo, with two methods: run() and
onKeypress(). On initialization, a Cameo class creates a WindowManager class with
onKeypress() as a callback, as well as a CaptureManager class using a camera and
the WindowManager class. When run() is called, the application executes a main
loop in which frames and events are processed. As a result of event processing,
onKeypress() may be called. The Space bar causes a screenshot to be taken, Tab
causes a screencast (a video recording) to start/stop, and Esc causes the application
to quit.

In the same directory as managers.py, let's create a file called cameo.py containing
the following implementation of Cameo:

import cv2
from managers import WindowManager, CaptureManager

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 # TODO: Filter the frame (Chapter 3).

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 def onKeypress (self, keycode):

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Files, Cameras, and GUIs

[40]

 """Handle a keypress.

 space -> Take a screenshot.
 tab -> Start/stop recording a screencast.
 escape -> Quit.

 """
 if keycode == 32: # space
 self._captureManager.writeImage('screenshot.png')
 elif keycode == 9: # tab
 if not self._captureManager.isWritingVideo:
 self._captureManager.startWritingVideo(
 'screencast.avi')
 else:
 self._captureManager.stopWritingVideo()
 elif keycode == 27: # escape
 self._windowManager.destroyWindow()

if __name__=="__main__":
 Cameo().run()

When running the application, note that the live camera feed is mirrored, while
screenshots and screencasts are not. This is the intended behavior, as we pass True
for shouldMirrorPreview when initializing the CaptureManager class.

So far, we do not manipulate the frames in any way except to mirror them for
preview. We will start to add more interesting effects in Chapter 3, Filtering Images.

Summary
By now, we should have an application that displays a camera feed, listens for
keyboard input, and (on command) records a screenshot or screencast. We are
ready to extend the application by inserting some image-filtering code (Chapter 3,
Filtering Images) between the start and end of each frame. Optionally, we are also
ready to integrate other camera drivers or other application frameworks (Appendix A,
Integrating with Pygame), besides the ones supported by OpenCV.

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images
This chapter presents some techniques for altering images. Our goal is to achieve
artistic effects, similar to the filters that can be found in image editing applications,
such as Photoshop or Gimp.

As we proceed with implementing filters, you can try applying them to any BGR
image and then saving or displaying the result. To fully appreciate each effect, try
it with various lighting conditions and subjects. By the end of this chapter, we will
integrate filters into the Cameo application.

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_03.zip.

Creating modules
Like our CaptureManager and WindowManager classes, our filters should be reusable
outside Cameo. Thus, we should separate the filters into their own Python module
or file.

Let's create a file called filters.py in the same directory as cameo.py. We need the
following import statements in filters.py:

import cv2
import numpy
import utils

Let's also create a file called utils.py in the same directory. It should contain the
following import statements:

import cv2
import numpy
import scipy.interpolate

www.it-ebooks.info

http://nummist.com/opencv/3923_03.zip
http://www.it-ebooks.info/

Filtering Images

[42]

We will be adding filter functions and classes to filters.py, while more
general-purpose math functions will go in utils.py.

Channel mixing – seeing in Technicolor
Channel mixing is a simple technique for remapping colors. The color at a
destination pixel is a function of the color at the corresponding source pixel (only).
More specifically, each channel's value at the destination pixel is a function of any or
all channels' values at the source pixel. In pseudocode, for a BGR image:

dst.b = funcB(src.b, src.g, src.r)
dst.g = funcG(src.b, src.g, src.r)
dst.r = funcR(src.b, src.g, src.r)

We may define these functions however we please. Potentially, we can map a scene's
colors much differently than a camera normally does or our eyes normally do.

One use of channel mixing is to simulate some other, smaller color space inside RGB
or BGR. By assigning equal values to any two channels, we can collapse part of the
color space and create the impression that our palette is based on just two colors of
light (blended additively) or two inks (blended subtractively). This type of effect can
offer nostalgic value because early color films and early digital graphics had more
limited palettes than digital graphics today.

As examples, let's invent some notional color spaces that are reminiscent of
Technicolor movies of the 1920s and CGA graphics of the 1980s. All of these notional
color spaces can represent grays but none can represent the full color range of RGB:

•	 RC (red, cyan): Note that red and cyan can mix to make grays. This color
space resembles Technicolor Process 2 and CGA Palette 3.

•	 RGV (red, green, value): Note that red and green cannot mix to make grays.
So we need to specify value or whiteness as well. This color space resembles
Technicolor Process 1.

•	 CMV (cyan, magenta, value): Note that cyan and magenta cannot mix to
make grays. So we need to specify value or whiteness as well. This color
space resembles CGA Palette 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The following is a screenshot from The Toll of the Sea (1922), a movie shot in
Technicolor Process 2:

The following image is from Commander Keen: Goodbye Galaxy (1991), a game that
supports CGA Palette 1. (For color images, see the electronic edition of this book.):

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[44]

Simulating RC color space
RC color space is easy to simulate in BGR. Blue and green can mix to make cyan. By
averaging the B and G channels and storing the result in both B and G, we effectively
collapse these two channels into one, C. To support this effect, let's add the following
function to filters.py:

def recolorRC(src, dst):
 """Simulate conversion from BGR to RC (red, cyan).

 The source and destination images must both be in BGR format.

 Blues and greens are replaced with cyans.

 Pseudocode:
 dst.b = dst.g = 0.5 * (src.b + src.g)
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.addWeighted(b, 0.5, g, 0.5, 0, b)
 cv2.merge((b, b, r), dst)

Three things are happening in this function:

1.	 Using split(), we extract our source image's channels as one-dimensional
arrays. Having put the data in this format, we can write clear, simple channel
mixing code.

2.	 Using addWeighted(), we replace the B channel's values with an average
of B and G. The arguments to addWeighted() are (in order) the first source
array, a weight applied to the first source array, the second source array, a
weight applied to the second source array, a constant added to the result, and
a destination array.

3.	 Using merge(), we replace the values in our destination image with the
modified channels. Note that we use b twice as an argument because we
want the destination's B and G channels to be equal.

Similar steps—splitting, modifying, and merging channels—can be applied to our
other color space simulations as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

Simulating RGV color space
RGV color space is just slightly more difficult to simulate in BGR. Our intuition
might say that we should set all B-channel values to 0 because RGV cannot represent
blue. However, this change would be wrong because it would discard the blue
component of lightness and, thus, turn grays and pale blues into yellows. Instead,
we want grays to remain gray while pale blues become gray. To achieve this result,
we should reduce B values to the per-pixel minimum of B, G, and R. Let's implement
this effect in filters.py as the following function:

def recolorRGV(src, dst):
 """Simulate conversion from BGR to RGV (red, green, value).

 The source and destination images must both be in BGR format.

 Blues are desaturated.

 Pseudocode:
 dst.b = min(src.b, src.g, src.r)
 dst.g = src.g
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.min(b, g, b)
 cv2.min(b, r, b)
 cv2.merge((b, g, r), dst)

The min() function computes the per-element minimums of the first two arguments
and writes them to the third argument.

Simulating CMV color space
Simulating CMV color space is quite similar to simulating RGV, except that the
desaturated part of the spectrum is yellow instead of blue. To desaturate yellows,
we should increase B values to the per-pixel maximum of B, G, and R. Here is an
implementation that we can add to filters.py:

def recolorCMV(src, dst):
 """Simulate conversion from BGR to CMV (cyan, magenta, value).

 The source and destination images must both be in BGR format.

 Yellows are desaturated.

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[46]

 Pseudocode:
 dst.b = max(src.b, src.g, src.r)
 dst.g = src.g
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.max(b, g, b)
 cv2.max(b, r, b)
 cv2.merge((b, g, r), dst)

The max() function computes the per-element maximums of the first two arguments
and writes them to the third argument.

By design, the three preceding effects tend to produce major color distortions,
especially when the source image is colorful in the first place. If we want to craft subtle
effects, channel mixing with arbitrary functions is probably not the best approach.

Curves – bending color space
Curves are another technique for remapping colors. Channel mixing and curves
are similar insofar as the color at a destination pixel is a function of the color at the
corresponding source pixel (only). However, in the specifics, channel mixing and
curves are dissimilar approaches. With curves, a channel's value at a destination pixel
is a function of (only) the same channel's value at the source pixel. Moreover, we do
not define the functions directly; instead, for each function, we define a set of control
points from which the function is interpolated. In pseudocode, for a BGR image:

dst.b = funcB(src.b) where funcB interpolates pointsB
dst.g = funcG(src.g) where funcG interpolates pointsG
dst.r = funcR(src.r) where funcR interpolates pointsR

The type of interpolation may vary between implementations, though it should
avoid discontinuous slopes at control points and, instead, produce curves. We will
use cubic spline interpolation whenever the number of control points is sufficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Formulating a curve
Our first step toward curve-based filters is to convert control points to a function.
Most of this work is done for us by a SciPy function called interp1d(), which takes
two arrays (x and y coordinates) and returns a function that interpolates the points.
As an optional argument to interp1d(), we may specify a kind of interpolation,
which, in principle, may be linear, nearest, zero, slinear (spherical linear),
quadratic, or cubic, though not all options are implemented in the current version
of SciPy. Another optional argument, bounds_error, may be set to False to permit
extrapolation as well as interpolation.

Let's edit utils.py and add a function that wraps interp1d() with a slightly
simpler interface:

def createCurveFunc(points):
 """Return a function derived from control points."""
 if points is None:
 return None
 numPoints = len(points)
 if numPoints < 2:
 return None
 xs, ys = zip(*points)
 if numPoints < 4:
 kind = 'linear'
 # 'quadratic' is not implemented.
 else:
 kind = 'cubic'
 return scipy.interpolate.interp1d(xs, ys, kind,
 bounds_error = False)

Rather than two separate arrays of coordinates, our function takes an array of
(x, y) pairs, which is probably a more readable way of specifying control
points. The array must be ordered such that x increases from one index to the
next. Typically, for natural-looking effects, the y values should increase too,
and the first and last control points should be (0, 0) and (255, 255) in order
to preserve black and white. Note that we will treat x as a channel's input value
and y as the corresponding output value. For example, (128, 160) would
brighten a channel's midtones.

Note that cubic interpolation requires at least four control points. If there are
only two or three control points, we fall back to linear interpolation but, for
natural-looking effects, this case should be avoided.

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[48]

Caching and applying a curve
Now we can get the function of a curve that interpolates arbitrary control points.
However, this function might be expensive. We do not want to run it once per
channel, per pixel (for example, 921,600 times per frame if applied to three channels
of 640 x 480 video). Fortunately, we are typically dealing with just 256 possible input
values (in 8 bits per channel) and we can cheaply precompute and store that many
output values. Then, our per-channel, per-pixel cost is just a lookup of the cached
output value.

Let's edit utils.py and add functions to create a lookup array for a given function
and to apply the lookup array to another array (for example, an image):

def createLookupArray(func, length = 256):
 """Return a lookup for whole-number inputs to a function.

 The lookup values are clamped to [0, length - 1].

 """
 if func is None:
 return None
 lookupArray = numpy.empty(length)
 i = 0
 while i < length:
 func_i = func(i)
 lookupArray[i] = min(max(0, func_i), length - 1)
 i += 1
 return lookupArray

def applyLookupArray(lookupArray, src, dst):
 """Map a source to a destination using a lookup."""
 if lookupArray is None:
 return
 dst[:] = lookupArray[src]

Note that the approach in createLookupArray() is limited to whole-number input
values, as the input value is used as an index into an array. The applyLookupArray()
function works by using a source array's values as indices into the lookup array.
Python's slice notation ([:]) is used to copy the looked-up values into a destination
array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Let's consider another optimization. What if we always want to apply two or more
curves in succession? Performing multiple lookups is inefficient and may cause
loss of precision. We can avoid this problem by combining two curve functions into
one function before creating a lookup array. Let's edit utils.py again and add the
following function that returns a composite of two given functions:

def createCompositeFunc(func0, func1):
 """Return a composite of two functions."""
 if func0 is None:
 return func1
 if func1 is None:
 return func0
 return lambda x: func0(func1(x))

The approach in createCompositeFunc() is limited to input functions that each
take a single argument. The arguments must be of compatible types. Note the use of
Python's lambda keyword to create an anonymous function.

Here is a final optimization issue. What if we want to apply the same curve to
all channels of an image? Splitting and remerging channels is wasteful, in this
case, because we do not need to distinguish between channels. We just need one-
dimensional indexing, as used by applyLookupArray(). Let's edit utils.py to add
a function that returns a one-dimensional interface to a preexisting, given array that
may be multidimensional:

def createFlatView(array):
 """Return a 1D view of an array of any dimensionality."""
 flatView = array.view()
 flatView.shape = array.size
 return flatView

The return type is numpy.view, which has much the same interface as numpy.array,
but numpy.view only owns a reference to the data, not a copy.

The approach in createFlatView() works for images with any number of channels.
Thus, it allows us to abstract the difference between grayscale and color images in
cases when we wish to treat all channels the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[50]

Designing object-oriented curve filters
Since we cache a lookup array for each curve, our curve-based filters have data
associated with them. Thus, they need to be classes, not just functions. Let's make
a pair of curve filter classes, along with corresponding higher-level classes that can
apply any function, not just a curve function:

•	 VFuncFilter: This is a class that is instantiated with a function, which it
can later apply to an image using apply(). The function is applied to the V
(value) channel of a grayscale image or to all channels of a color image.

•	 VcurveFilter: This is a subclass of VFuncFilter. Instead of being
instantiated with a function, it is instantiated with a set of control points,
which it uses internally to create a curve function.

•	 BGRFuncFilter: This is a class that is instantiated with up to four
functions, which it can later apply to a BGR image using apply().
One of the functions is applied to all channels and the other three
functions are each applied to a single channel. The overall function
is applied first and then the per-channel functions.

•	 BGRCurveFilter: this is a subclass of BGRFuncFilter. Instead of being
instantiated with four functions, it is instantiated with four sets of control
points, which it uses internally to create curve functions.

Additionally, all these classes accept a constructor argument that is a numeric type,
such as numpy.uint8 for 8 bits per channel. This type is used to determine how
many entries should be in the lookup array.

Let's first look at the implementations of VFuncFilter and VcurveFilter, which
may both be added to filters.py:

class VFuncFilter(object):
 """A filter that applies a function to V (or all of BGR)."""

 def __init__(self, vFunc = None, dtype = numpy.uint8):
 length = numpy.iinfo(dtype).max + 1
 self._vLookupArray = utils.createLookupArray(vFunc, length)

 def apply(self, src, dst):
 """Apply the filter with a BGR or gray source/destination."""
 srcFlatView = utils.flatView(src)
 dstFlatView = utils.flatView(dst)
 utils.applyLookupArray(self._vLookupArray, srcFlatView,
 dstFlatView)

class VCurveFilter(VFuncFilter):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

 """A filter that applies a curve to V (or all of BGR)."""

 def __init__(self, vPoints, dtype = numpy.uint8):
 VFuncFilter.__init__(self, utils.createCurveFunc(vPoints),
 dtype)

Here, we are internalizing the use of several of our previous functions:
createCurveFunc(), createLookupArray(), flatView(), and
applyLookupArray(). We are also using numpy.iinfo() to determine
the relevant range of lookup values, based on the given numeric type.

Now, let's look at the implementations of BGRFuncFilter and BGRCurveFilter,
which may both be added to filters.py as well:

class BGRFuncFilter(object):
 """A filter that applies different functions to each of BGR."""

 def __init__(self, vFunc = None, bFunc = None, gFunc = None,
 rFunc = None, dtype = numpy.uint8):
 length = numpy.iinfo(dtype).max + 1
 self._bLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(bFunc, vFunc), length)
 self._gLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(gFunc, vFunc), length)
 self._rLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(rFunc, vFunc), length)

 def apply(self, src, dst):
 """Apply the filter with a BGR source/destination."""
 b, g, r = cv2.split(src)
 utils.applyLookupArray(self._bLookupArray, b, b)
 utils.applyLookupArray(self._gLookupArray, g, g)
 utils.applyLookupArray(self._rLookupArray, r, r)
 cv2.merge([b, g, r], dst)

class BGRCurveFilter(BGRFuncFilter):
 """A filter that applies different curves to each of BGR."""

 def __init__(self, vPoints = None, bPoints = None,
 gPoints = None, rPoints = None, dtype = numpy.uint8):
 BGRFuncFilter.__init__(self,
 utils.createCurveFunc(vPoints),
 utils.createCurveFunc(bPoints),
 utils.createCurveFunc(gPoints),
 utils.createCurveFunc(rPoints), dtype)

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[52]

Again, we are internalizing the use of several of our previous functions:
createCurveFunc(), createCompositeFunc(), createLookupArray(), and
applyLookupArray(). We are also using iinfo(), split(), and merge().

These four classes can be used as is, with custom functions or control points being
passed as arguments at instantiation. Alternatively, we can make further subclasses
that hard-code certain functions or control points. Such subclasses could be
instantiated without any arguments.

Emulating photo films
A common use of curves is to emulate the palettes that were common in pre-digital
photography. Every type of photo film has its own, unique rendition of color
(or grays) but we can generalize about some of the differences from digital sensors.
Film tends to suffer loss of detail and saturation in shadows, whereas digital tends to
suffer these failings in highlights. Also, film tends to have uneven saturation across
different parts of the spectrum. So each film has certain colors that pop or jump out.

Thus, when we think of good-looking film photos, we may think of scenes
(or renditions) that are bright and that have certain dominant colors. At the
other extreme, we may remember the murky look of underexposed film that
could not be improved much by the efforts of the lab technician.

We are going to create four different film-like filters using curves. They are inspired
by three kinds of film and a processing technique:

•	 Kodak Portra, a family of films that are optimized for portraits and weddings
•	 Fuji Provia, a family of general-purpose films
•	 Fuji Velvia, a family of films that are optimized for landscapes
•	 Cross-processing, a nonstandard film processing technique, sometimes used

to produce a grungy look in fashion and band photography

Each film emulation effect is a very simple subclass of BGRCurveFilter. We just
override the constructor to specify a set of control points for each channel. The choice
of control points is based on recommendations by photographer Petteri Sulonen. See
his article on film-like curves at http://www.prime-junta.net/pont/How_to/100_
Curves_and_Films/_Curves_and_films.html.

The Portra, Provia, and Velvia effects should produce normal-looking images. The
effect should not be obvious except in before-and-after comparisons.

www.it-ebooks.info

http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.it-ebooks.info/

Chapter 3

[53]

Emulating Kodak Portra
Portra has a broad highlight range that tends toward warm (amber) colors,
while shadows are cooler (more blue). As a portrait film, it tends to make people's
complexions fairer. Also, it exaggerates certain common clothing colors, such as
milky white (for example, a wedding dress) and dark blue (for example, a suit or
jeans). Let's add this implementation of a Portra filter to filters.py:

class BGRPortraCurveFilter(BGRCurveFilter):
 """A filter that applies Portra-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 vPoints = [(0,0),(23,20),(157,173),(255,255)],
 bPoints = [(0,0),(41,46),(231,228),(255,255)],
 gPoints = [(0,0),(52,47),(189,196),(255,255)],
 rPoints = [(0,0),(69,69),(213,218),(255,255)],
 dtype = dtype)

Emulating Fuji Provia
Provia has strong contrast and is slightly cool (blue) throughout most tones. Sky,
water, and shade are enhanced more than sun. Let's add this implementation of a
Provia filter to filters.py:

class BGRProviaCurveFilter(BGRCurveFilter):
 """A filter that applies Provia-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 bPoints = [(0,0),(35,25),(205,227),(255,255)],
 gPoints = [(0,0),(27,21),(196,207),(255,255)],
 rPoints = [(0,0),(59,54),(202,210),(255,255)],
 dtype = dtype)

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[54]

Emulating Fuji Velvia
Velvia has deep shadows and vivid colors. It can often produce azure skies in
daytime and crimson clouds at sunset. The effect is difficult to emulate but here
is an attempt that we can add to filters.py:

class BGRVelviaCurveFilter(BGRCurveFilter):
 """A filter that applies Velvia-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 vPoints = [(0,0),(128,118),(221,215),(255,255)],
 bPoints = [(0,0),(25,21),(122,153),(165,206),(255,255)],
 gPoints = [(0,0),(25,21),(95,102),(181,208),(255,255)],
 rPoints = [(0,0),(41,28),(183,209),(255,255)],
 dtype = dtype)

Emulating cross-processing
Cross-processing produces a strong, blue or greenish-blue tint in shadows and a
strong, yellow or greenish-yellow in highlights. Black and white are not necessarily
preserved. Also, contrast is very high. Cross-processed photos take on a sickly
appearance. People look jaundiced, while inanimate objects look stained. Let's edit
filters.py to add the following implementation of a cross-processing filter:

class BGRCrossProcessCurveFilter(BGRCurveFilter):
 """A filter that applies cross-process-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 bPoints = [(0,20),(255,235)],
 gPoints = [(0,0),(56,39),(208,226),(255,255)],
 rPoints = [(0,0),(56,22),(211,255),(255,255)],
 dtype = dtype)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Highlighting edges
Edges play a major role in both human and computer vision. We, as humans, can
easily recognize many object types and their pose just by seeing a backlit silhouette
or a rough sketch. Indeed, when art emphasizes edges and pose, it often seems to
convey the idea of an archetype, like Rodin's The Thinker or Joe Shuster's Superman.
Software, too, can reason about edges, poses, and archetypes. We will discuss these
kinds of reasoning in later chapters.

For the moment, we are interested in a simple use of edges for artistic effect. We
are going to trace an image's edges with bold, black lines. The effect should be
reminiscent of a comic book or other illustration, drawn with a felt pen.

OpenCV provides many edge-finding filters, including Laplacian(), Sobel(), and
Scharr(). These filters are supposed to turn non-edge regions to black while turning
edge regions to white or saturated colors. However, they are prone to misidentifying
noise as edges. This flaw can be mitigated by blurring an image before trying to find
its edges. OpenCV also provides many blurring filters, including blur() (simple
average), medianBlur(), and GaussianBlur(). The arguments to the edge-finding
and blurring filters vary but always include ksize, an odd whole number that
represents the width and height (in pixels) of the filter's kernel.

A kernel is a set of weights that are applied to a region in the source
image to generate a single pixel in the destination image. For example,
a ksize of 7 implies that 49 (7 x 7) source pixels are considered in
generating each destination pixel. We can think of a kernel as a piece
of frosted glass moving over the source image and letting through a
diffused blend of the source's light.

For blurring, let's use medianBlur(), which is effective in removing digital
video noise, especially in color images. For edge-finding, let's use Laplacian(),
which produces bold edge lines, especially in grayscale images. After applying
medianBlur(), but before applying Laplacian(), we should convert from BGR
to grayscale.

Once we have the result of Laplacian(), we can invert it to get black edges on a
white background. Then, we can normalize it (so that its values range from 0 to 1)
and multiply it with the source image to darken the edges. Let's implement this
approach in filters.py:

def strokeEdges(src, dst, blurKsize = 7, edgeKsize = 5):
 if blurKsize >= 3:
 blurredSrc = cv2.medianBlur(src, blurKsize)
 graySrc = cv2.cvtColor(blurredSrc, cv2.COLOR_BGR2GRAY)

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[56]

 else:
 graySrc = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
 cv2.Laplacian(graySrc, cv2.cv.CV_8U, graySrc, ksize = edgeKsize)
 normalizedInverseAlpha = (1.0 / 255) * (255 - graySrc)
 channels = cv2.split(src)
 for channel in channels:
 channel[:] = channel * normalizedInverseAlpha
 cv2.merge(channels, dst)

Note that we allow kernel sizes to be specified as arguments to strokeEdges().
The blurKsize argument is used as ksize for medianBlur(), while edgeKsize is
used as ksize for Laplacian(). With my webcams, I find that a blurKsize value
of 7 and edgeKsize value of 5 look best. Unfortunately, medianBlur() is expensive
with a large ksize like 7. If you encounter performance problems when running
strokeEdges(), try decreasing the blurKsize value. To turn off blur, set it to a
value less than 3.

Custom kernels – getting convoluted
As we have just seen, many of OpenCV's predefined filters use a kernel. Remember
that a kernel is a set of weights, which determine how each output pixel is calculated
from a neighborhood of input pixels. Another term for a kernel is a convolution
matrix. It mixes up or convolutes the pixels in a region. Similarly, a kernel-based filter
may be called a convolution filter.

OpenCV provides a very versatile function, filter2D(), which applies any kernel
or convolution matrix that we specify. To understand how to use this function, let's
first learn the format of a convolution matrix. It is a 2D array with an odd number
of rows and columns. The central element corresponds to a pixel of interest and the
other elements correspond to that pixel's neighbors. Each element contains an integer
or floating point value, which is a weight that gets applied to an input pixel's value.
Consider this example:

kernel = numpy.array([[-1, -1, -1],
 [-1, 9, -1],
 [-1, -1, -1]])

Here, the pixel of interest has a weight of 9 and its immediate neighbors each have
a weight of -1. For the pixel of interest, the output color will be nine times its input
color, minus the input colors of all eight adjacent pixels. If the pixel of interest was
already a bit different from its neighbors, this difference becomes intensified. The
effect is that the image looks sharper as the contrast between neighbors is increased.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Continuing our example, we can apply this convolution matrix to a source image
and destination image as follows:

cv2.filter2D(src, -1, kernel, dst)

The second argument specifies the per-channel depth of the destination image
(such as cv2.CV_8U for 8 bits per channel). A negative value (as used here) means
that the destination image has the same depth as the source image.

For color images, note that filter2D() applies the kernel equally
to each channel. To use different kernels on different channels, we
would also have to use the split() and merge() functions, as
we did in our earlier channel mixing functions. (See the section
Simulating RC color space.)

Based on this simple example, let's add two classes to filters.py. One class,
VConvolutionFilter, will represent a convolution filter in general. A subclass,
SharpenFilter, will represent our sharpening filter specifically. Let's edit
filters.py to implement these two new classes as follows:

class VConvolutionFilter(object):
 """A filter that applies a convolution to V (or all of BGR)."""

 def __init__(self, kernel):
 self._kernel = kernel

 def apply(self, src, dst):
 """Apply the filter with a BGR or gray source/destination."""
 cv2.filter2D(src, -1, self._kernel, dst)

class SharpenFilter(VConvolutionFilter):
 """A sharpen filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-1, -1, -1],
 [-1, 9, -1],
 [-1, -1, -1]])
 VConvolutionFilter.__init__(self, kernel)

The pattern is very similar to the VCurveFilter class and its subclasses. (See the
section Designing object-oriented curve filters.)

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[58]

Note that the weights sum to 1. This should be the case whenever we want to leave
the image's overall brightness unchanged. If we modify a sharpening kernel slightly,
so that its weights sum to 0 instead, then we have an edge detection kernel that
turns edges white and non-edges black. For example, let's add the following edge
detection filter to filters.py:

class FindEdgesFilter(VConvolutionFilter):
 """An edge-finding filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-1, -1, -1],
 [-1, 8, -1],
 [-1, -1, -1]])
 VConvolutionFilter.__init__(self, kernel)

Next, let's make a blur filter. Generally, for a blur effect, the weights should sum
to 1 and should be positive throughout the neighborhood. For example, we can
take a simple average of the neighborhood, as follows:

class BlurFilter(VConvolutionFilter):
 """A blur filter with a 2-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04]])
 VConvolutionFilter.__init__(self, kernel)

Our sharpening, edge detection, and blur filters use kernels that are highly
symmetric. Sometimes, though, kernels with less symmetry produce an interesting
effect. Let's consider a kernel that blurs on one side (with positive weights) and
sharpens on the other (with negative weights). It will produce a ridged or embossed
effect. Here is an implementation that we can add to filters.py:

class EmbossFilter(VConvolutionFilter):
 """An emboss filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-2, -1, 0],
 [-1, 1, 1],
 [0, 1, 2]])
 VConvolutionFilter.__init__(self, kernel)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

This set of custom convolution filters is very basic. Indeed, it is more basic than
OpenCV's ready-made set of filters. However, with a bit of experimentation, you
should be able to write your own kernels that produce a unique look.

Modifying the application
Now that we have high-level functions and classes for several filters, it is trivial to
apply any of them to the captured frames in Cameo. Let's edit cameo.py and add the
lines that appear in bold face in the following excerpt:

import cv2
import filters
from managers import WindowManager, CaptureManager

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)
 self._curveFilter = filters.BGRPortraCurveFilter()

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 # TODO: Track faces (Chapter 3).

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 # ... The rest is the same as in Chapter 2.

Here, I have chosen to apply two effects: stroking the edges and emulating Portra
film colors. Feel free to modify the code to apply any filters you like.

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Images

[60]

Here is a screenshot from Cameo, with stroked edges and Portra-like colors:

Summary
At this point, we should have an application that displays a filtered camera feed. We
should also have several more filter implementations that are easily swappable with
the ones we are currently using. Now, we are ready to proceed with analyzing each
frame for the sake of finding faces to manipulate in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with
Haar Cascades

This chapter introduces some of OpenCV's tracking functionality, along with the
data files that define particular types of trackable objects. Specifically, we look at
Haar cascade classifiers, which analyze contrast between adjacent image regions to
determine whether or not a given image or subimage matches a known type. We
consider how to combine multiple Haar cascade classifiers in a hierarchy, such that
one classifier identifies a parent region (for our purposes, a face) and other classifiers
identify child regions (eyes, nose, and mouth).

We also take a detour into the humble but important subject of rectangles.
By drawing, copying, and resizing rectangular image regions, we can perform
simple manipulations on image regions that we are tracking.

By the end of this chapter, we will integrate face tracking and rectangle
manipulations into Cameo. Finally, we'll have some face-to-face interaction!

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_04.zip.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[62]

Conceptualizing Haar cascades
When we talk about classifying objects and tracking their location, what exactly are
we hoping to pinpoint? What constitutes a recognizable part of an object?

Photographic images, even from a webcam, may contain a lot of detail for our
(human) viewing pleasure. However, image detail tends to be unstable with respect to
variations in lighting, viewing angle, viewing distance, camera shake, and digital noise.
Moreover, even real differences in physical detail might not interest us for the purpose
of classification. I was taught in school, that no two snowflakes look alike under a
microscope. Fortunately, as a Canadian child, I had already learned how to recognize
snowflakes without a microscope, as the similarities are more obvious in bulk.

Thus, some means of abstracting image detail is useful in producing stable
classification and tracking results. The abstractions are called features, which are
said to be extracted from the image data. There should be far fewer features than
pixels, though any pixel might influence multiple features. The level of similarity
between two images can be evaluated based on distances between the images'
corresponding features. For example, distance might be defined in terms of spatial
coordinates or color coordinates. Haar-like features are one type of feature that is
often applied to real-time face tracking. They were first used for this purpose by
Paul Viola and Michael Jones in 2001. Each Haar-like feature describes the pattern
of contrast among adjacent image regions. For example, edges, vertices, and thin
lines each generate distinctive features. For any given image, the features may vary
depending on the regions' size, which may be called the window size. Two images
that differ only in scale should be capable of yielding similar features, albeit for
different window sizes. Thus, it is useful to generate features for multiple window
sizes. Such a collection of features is called a cascade. We may say a Haar cascade
is scale-invariant or, in other words, robust to changes in scale. OpenCV provides
a classifier and tracker for scale-invariant Haar cascades, which it expects to be in
a certain file format. Haar cascades, as implemented in OpenCV, are not robust to
changes in rotation. For example, an upside-down face is not considered similar to
an upright face and a face viewed in profile is not considered similar to a face viewed
from the front. A more complex and more resource-intensive implementation could
improve Haar cascades' robustness to rotation by considering multiple transformations
of images as well as multiple window sizes. However, we will confine ourselves to the
implementation in OpenCV.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Getting Haar cascade data
As part of your OpenCV setup, you probably have a directory called haarcascades.
It contains cascades that are trained for certain subjects using tools that come with
OpenCV. The directory's full path depends on your system and method of setting up
OpenCV, as follows:

•	 Build from source archive: <unzip_destination>/data/haarcascades
•	 Windows with self-extracting ZIP: <unzip_destination>/data/

haarcascades

•	 Mac with MacPorts: /opt/local/share/OpenCV/haarcascades
•	 Mac with Homebrew: The haarcascades file is not included; to get it,

download the source archive
•	 Ubuntu with apt or Software Center: The haarcascades file is not included;

to get it, download the source archive

If you cannot find haarcascades, then download the source archive
from http://sourceforge.net/projects/opencvlibrary/
files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download (or the Windows self-extracting ZIP from http://
sourceforge.net/projects/opencvlibrary/files/opencv-
win/2.4.3/OpenCV-2.4.3.exe/download), unzip it, and look for
<unzip_destination>/data/haarcascades.

Once you find haarcascades, create a directory called cascades in the same folder
as cameo.py and copy the following files from haarcascades into cascades:

haarcascade_frontalface_alt.xml
haarcascade_eye.xml
haarcascade_mcs_nose.xml
haarcascade_mcs_mouth.xml

As their names suggest, these cascades are for tracking faces, eyes, noses, and
mouths. They require a frontal, upright view of the subject. We will use them later
when building a high-level tracker. If you are curious about how these data sets are
generated, refer to Appendix B, Generating Haar Cascades for Custom Targets. With a lot
of patience and a powerful computer, you can make your own cascades, trained for
various types of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[64]

Creating modules
We should continue to maintain good separation between application-specific code
and reusable code. Let's make new modules for tracking classes and their helpers.

A file called trackers.py should be created in the same directory as cameo.py
(and, equivalently, in the parent directory of cascades). Let's put the following
import statements at the start of trackers.py:

import cv2
import rects
import utils

Alongside trackers.py and cameo.py, let's make another file called rects.py
containing the following import statement:

import cv2

Our face tracker and a definition of a face will go in trackers.py, while various
helpers will go in rects.py and our preexisting utils.py file.

Defining a face as a hierarchy of
rectangles
Before we start implementing a high-level tracker, we should define the type of
tracking result that we want to get. For many applications, it is important to estimate
how objects are posed in real, 3D space. However, our application is about image
manipulation. So we care more about 2D image space. An upright, frontal view of a
face should occupy a roughly rectangular region in the image. Within such a region,
eyes, a nose, and a mouth should occupy rough rectangular subregions. Let's open
trackers.py and add a class containing the relevant data:

class Face(object):
 """Data on facial features: face, eyes, nose, mouth."""

 def __init__(self):
 self.faceRect = None
 self.leftEyeRect = None
 self.rightEyeRect = None
 self.noseRect = None
 self.mouthRect = None

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

Whenever our code contains a rectangle as a property or a function
argument, we will assume it is in the format (x, y, w, h)
where the unit is pixels, the upper-left corner is at (x, y), and
the lower-right corner at (x+w, y+h). OpenCV sometimes uses
a compatible representation but not always. So we must be careful
when sending/receiving rectangles to/from OpenCV. For example,
sometimes OpenCV requires the upper-left and lower-right corners
as coordinate pairs.

Tracing, cutting, and pasting rectangles
When I was in primary school, I was poor at crafts. I often had to take my unfinished
craft projects home, where my mother volunteered to finish them for me so that I
could spend more time on the computer instead. I shall never cut and paste a sheet
|of paper, nor an array of bytes, without thinking of those days.

Just as in crafts, mistakes in our graphics program are easier to see if we first draw
outlines. For debugging purposes, Cameo will include an option to draw lines
around any rectangles represented by a Face. OpenCV provides a rectangle()
function for drawing. However, its arguments represent a rectangle differently
than Face does. For convenience, let's add the following wrapper of rectangle()
to rects.py:

def outlineRect(image, rect, color):
 if rect is None:
 return
 x, y, w, h = rect
 cv2.rectangle(image, (x, y), (x+w, y+h), color)

Here, color should normally be either a BGR triplet (of values ranging from 0 to 255)
or a grayscale value (ranging from 0 to 255), depending on the image's format.

Next, Cameo must support copying one rectangle's contents into another rectangle.
We can read or write a rectangle within an image by using Python's slice notation.
Remembering that an image's first index is the y coordinate or row, we can specify a
rectangle as image[y:y+h, x:x+w]. For copying, a complication arises if the source
and destination of rectangles are of different sizes. Certainly, we expect two faces to
appear at different sizes, so we must address this case. OpenCV provides a resize()
function that allows us to specify a destination size and an interpolation method.
Combining slicing and resizing, we can add the following implementation of a copy
function to rects.py:

def copyRect(src, dst, srcRect, dstRect,
 interpolation = cv2.INTER_LINEAR):

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[66]

 """Copy part of the source to part of the destination."""

 x0, y0, w0, h0 = srcRect
 x1, y1, w1, h1 = dstRect

 # Resize the contents of the source sub-rectangle.
 # Put the result in the destination sub-rectangle.
 dst[y1:y1+h1, x1:x1+w1] = \
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation)

OpenCV supports the following options for interpolation:

•	 cv2.INTER_NEAREST: This is nearest-neighbor interpolation, which is cheap
but produces blocky results

•	 cv2.INTER_LINEAR: This is bilinear interpolation (the default), which offers a
good compromise between cost and quality in real-time applications

•	 cv2.INTER_AREA: This is pixel area relation, which may offer a better
compromise between cost and quality when downscaling but produces
blocky results when upscaling

•	 cv2.INTER_CUBIC: This is bicubic interpolation over a 4 x 4 pixel
neighborhood, a high-cost, high-quality approach

•	 cv2.INTER_LANCZOS4: This is Lanczos interpolation over an 8 x 8 pixel
neighborhood, the highest-cost, highest-quality approach

Copying becomes more complicated if we want to support swapping of two or more
rectangles' contents. Consider the following approach, which is wrong:

copyRect(image, image, rect0, rect1) # overwrite rect1
copyRect(image, image, rect1, rect0) # copy from rect1
Oops! rect1 was already overwritten by the time we copied from it!

Instead, we need to copy one of the rectangles to a temporary array before
overwriting anything. Let's edit rects.py to add the following function, which
swaps the contents of two or more rectangles in a single source image:

def swapRects(src, dst, rects,
 interpolation = cv2.INTER_LINEAR):
 """Copy the source with two or more sub-rectangles swapped."""

 if dst is not src:
 dst[:] = src

 numRects = len(rects)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

 if numRects < 2:
 return

 # Copy the contents of the last rectangle into temporary storage.
 x, y, w, h = rects[numRects - 1]
 temp = src[y:y+h, x:x+w].copy()

 # Copy the contents of each rectangle into the next.
 i = numRects - 2
 while i >= 0:
 copyRect(src, dst, rects[i], rects[i+1], interpolation)
 i -= 1

 # Copy the temporarily stored content into the first rectangle.
 copyRect(temp, dst, (0, 0, w, h), rects[0], interpolation)

The swap is circular, such that it can support any number of rectangles. Each
rectangle's content is destined for the next rectangle, except that the last rectangle's
content is destined for the first rectangle.

This approach should serve us well enough for Cameo, but it is still not
entirely foolproof. Intuition might tell us that the following code should
leave image unchanged:

swapRects(image, image, rect0, rect1)
swapRects(image, image, rect1, rect0)

However, if rect0 and rect1 overlap, our intuition may be incorrect. If you see
strange-looking results, then investigate the possibility that you are swapping
overlapping rectangles.

Adding more utility functions
Last chapter, we created a module called utils for some miscellaneous helper
functions. A couple of extra helper functions will make it easier for us to write
a tracker.

First, it may be useful to know whether an image is in grayscale or color. We can
tell based on the dimensionality of the image. Color images are 3D arrays, while
grayscale images have fewer dimensions. Let's add the following function to utils.
py to test whether an image is in grayscale:

def isGray(image):
 """Return True if the image has one channel per pixel."""
 return image.ndim < 3

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[68]

Second, it may be useful to know an image's dimensions and to divide these
dimensions by a given factor. An image's (or other array's) height and width,
respectively, are the first two entries in its shape property. Let's add the following
function to utils.py to get an image's dimensions, divided by a value:

def widthHeightDividedBy(image, divisor):
 """Return an image's dimensions, divided by a value."""
 h, w = image.shape[:2]
 return (w/divisor, h/divisor)

Now, let's get back on track with this chapter's main subject, tracking.

Tracking faces
The challenge in using OpenCV's Haar cascade classifiers is not just getting a
tracking result; it is getting a series of sensible tracking results at a high frame rate.
One kind of common sense that we can enforce is that certain tracked objects should
have a hierarchical relationship, one being located relative to the other. For example,
a nose should be in the middle of a face. By attempting to track both a whole face and
parts of a face, we can enable application code to do more detailed manipulations
and to check how good a given tracking result is. A face with a nose is a better result
than one without. At the same time, we can support some optimizations, such as
only looking for faces of a certain size and noses in certain places.

We are going to implement an optimized, hierarchical tracker in a class called
FaceTracker, which offers a simple interface. A FaceTracker may be initialized
with certain optional configuration arguments that are relevant to the tradeoff
between tracking accuracy and performance. At any given time, the latest tracking
results of FaceTracker are stored in a property called faces, which is a list of Face
instances. Initially, this list is empty. It is refreshed via an update() method that
accepts an image for the tracker to analyze. Finally, for debugging purposes, the
rectangles of faces may be drawn via a drawDebugRects() method, which accepts
an image as a drawing surface. Every frame, a real-time face-tracking application
would call update(), read faces, and perhaps call drawDebugRects().

Internally, FaceTracker uses an OpenCV class called CascadeClassifier.
A CascadeClassifier is initialized with a cascade data file, such as the ones
that we found and copied earlier. For our purposes, the important method of
CascadeClassifier is detectMultiScale(), which performs tracking that may be
robust to variations in scale. The possible arguments to detectMultiScale() are:

•	 image: This is an image to be analyzed. It must have 8 bits per channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

•	 scaleFactor: This scaling factor separates the window sizes in two
successive passes. A higher value improves performance but diminishes
robustness with respect to variations in scale.

•	 minNeighbors: This value is one less than the minimum number of
regions that are required in a match. (A match may merge multiple
neighboring regions.)

•	 flags: There are several flags but not all combinations are valid. The valid
standalone flags and valid combinations include:

°° cv2.cv.CV_HAAR_SCALE_IMAGE: Scales each windowed image region
to match the feature data. (The default approach is the opposite: scale
the feature data to match the window.) Scaling the image allows for
certain optimizations on modern hardware. This flag must not be
combined with others.

°° cv2.cv.CV_HAAR_DO_CANNY_PRUNING: Eagerly rejects regions that
contain too many or too few edges to match the object type. This
flag should not be combined with cv2.cv.CV_HAAR_FIND_BIGGEST_
OBJECT.

°° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT: Accepts, at most, one
match (the biggest).

°° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.HAAR_DO_
ROUGH SEARCH: Accepts, at most, one match (the biggest) and skips
some steps that would refine (shrink) the region of this match. The
minNeighbors argument should be greater than 0.

•	 minSize: A pair of pixel dimensions representing the minimum object size
being sought. A higher value improves performance.

•	 maxSize: A pair of pixel dimensions representing the maximum object size
being sought. A lower value improves performance.

The return value of detectMultiScale() is a list of matches, each expressed as a
rectangle in the format [x, y, w, h].

Similarly, the initializer of FaceTracker accepts scaleFactor, minNeighbors, and
flags as arguments. The given values are passed to all detectMultiScale() calls
that a FaceTracker makes internally. Also during initialization, a FaceTracker
creates CascadeClassifiers using face, eye, nose, and mouth data. Let's add the
following implementation of the initializer and the faces property to trackers.py:

class FaceTracker(object):
 """A tracker for facial features: face, eyes, nose, mouth."""

 def __init__(self, scaleFactor = 1.2, minNeighbors = 2,

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[70]

 flags = cv2.cv.CV_HAAR_SCALE_IMAGE):

 self.scaleFactor = scaleFactor
 self.minNeighbors = minNeighbors
 self.flags = flags

 self._faces = []

 self._faceClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_frontalface_alt.xml')
 self._eyeClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_eye.xml')
 self._noseClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_mcs_nose.xml')
 self._mouthClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_mcs_mouth.xml')

 @property
 def faces(self):
 """The tracked facial features."""
 return self._faces

The update() method of FaceTracker first creates an equalized, grayscale variant
of the given image. Equalization, as implemented in OpenCV's equalizeHist()
function, normalizes an image's brightness and increases its contrast. Equalization as
a preprocessing step makes our tracker more robust to variations in lighting, while
conversion to grayscale improves performance. Next, we feed the preprocessed image
to our face classifier. For each matching rectangle, we search certain subregions for a left
and right eye, nose, and mouth. Ultimately, the matching rectangles and subrectangles
are stored in Face instances in faces. For each type of tracking, we specify a minimum
object size that is proportional to the image size. Our implementation of FaceTracker
should continue with the following code for update():

 def update(self, image):
 """Update the tracked facial features."""

 self._faces = []

 if utils.isGray(image):
 image = cv2.equalizeHist(image)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

 else:
 image = cv2.cvtColor(image, cv2.cv.CV_BGR2GRAY)
 cv2.equalizeHist(image, image)

 minSize = utils.widthHeightDividedBy(image, 8)

 faceRects = self._faceClassifier.detectMultiScale(
 image, self.scaleFactor, self.minNeighbors, self.flags,
 minSize)

 if faceRects is not None:
 for faceRect in faceRects:

 face = Face()
 face.faceRect = faceRect

 x, y, w, h = faceRect

 # Seek an eye in the upper-left part of the face.
 searchRect = (x+w/7, y, w*2/7, h/2)
 face.leftEyeRect = self._detectOneObject(
 self._eyeClassifier, image, searchRect, 64)

 # Seek an eye in the upper-right part of the face.
 searchRect = (x+w*4/7, y, w*2/7, h/2)
 face.rightEyeRect = self._detectOneObject(
 self._eyeClassifier, image, searchRect, 64)

 # Seek a nose in the middle part of the face.
 searchRect = (x+w/4, y+h/4, w/2, h/2)
 face.noseRect = self._detectOneObject(
 self._noseClassifier, image, searchRect, 32)

 # Seek a mouth in the lower-middle part of the face.
 searchRect = (x+w/6, y+h*2/3, w*2/3, h/3)
 face.mouthRect = self._detectOneObject(
 self._mouthClassifier, image, searchRect, 16)

 self._faces.append(face)

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[72]

Note that update() relies on utils.isGray() and utils.
widthHeightDividedBy(), both implemented earlier in this chapter. Also, it relies
on a private helper method, _detectOneObject(), which is called several times
in order to handle the repetitious work of tracking several subparts of the face.
As arguments, _detectOneObject() requires a classifier, image, rectangle, and
minimum object size. The rectangle is the image subregion that the given classifier
should search. For example, the nose classifier should search the middle of the face.
Limiting the search area improves performance and helps eliminate false positives.
Internally, _detectOneObject() works by running the classifier on a slice of the
image and returning the first match (or None if there are no matches). This approach
works whether or not we are using the cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT
flag. Our implementation of FaceTracker should continue with the following code
for _detectOneObject():

 def _detectOneObject(self, classifier, image, rect,
 imageSizeToMinSizeRatio):

 x, y, w, h = rect

 minSize = utils.widthHeightDividedBy(
 image, imageSizeToMinSizeRatio)

 subImage = image[y:y+h, x:x+w]

 subRects = classifier.detectMultiScale(
 subImage, self.scaleFactor, self.minNeighbors,
 self.flags, minSize)

 if len(subRects) == 0:
 return None

 subX, subY, subW, subH = subRects[0]
 return (x+subX, y+subY, subW, subH)

Lastly, FaceTracker should offer basic drawing functionality so that its tracking
results can be displayed for debugging purposes. The following method
implementation simply defines colors, iterates over Face instances, and draws
rectangles of each Face to a given image using our rects.outlineRect() function:

def drawDebugRects(self, image):
 """Draw rectangles around the tracked facial features."""

 if utils.isGray(image):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

 faceColor = 255
 leftEyeColor = 255
 rightEyeColor = 255
 noseColor = 255
 mouthColor = 255
 else:
 faceColor = (255, 255, 255) # white
 leftEyeColor = (0, 0, 255) # red
 rightEyeColor = (0, 255, 255) # yellow
 noseColor = (0, 255, 0) # green
 mouthColor = (255, 0, 0) # blue

 for face in self.faces:
 rects.outlineRect(image, face.faceRect, faceColor)
 rects.outlineRect(image, face.leftEyeRect, leftEyeColor)
 rects.outlineRect(image, face.rightEyeRect,
 rightEyeColor)
 rects.outlineRect(image, face.noseRect, noseColor)
 rects.outlineRect(image, face.mouthRect, mouthColor)

Now, we have a high-level tracker that hides the details of Haar cascade classifiers
while allowing application code to supply new images, fetch data about tracking
results, and ask for debug drawing.

Modifying the application
Let's look at two approaches to integrating face tracking and swapping into Cameo.
The first approach uses a single camera feed and swaps face rectangles found within
this camera feed. The second approach uses two camera feeds and copies face
rectangles from one camera feed to the other.

For now, we will limit ourselves to manipulating faces as a whole and not
subelements such as eyes. However, you could modify the code to swap only eyes,
for example. If you try this, be careful to check that the relevant subrectangles of the
face are not None.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[74]

Swapping faces in one camera feed
For the single-camera version, the modifications are quite straightforward. On
initialization of Cameo, we create a FaceTracker and a Boolean variable indicating
whether debug rectangles should be drawn for the FaceTracker. The Boolean is
toggled in onKeypress() in response to the X key. As part of the main loop in run(),
we update our FaceTracker with the current frame. Then, the resulting FaceFace
objects (in the faces property) are fetched and their faceRects are swapped using
rects.swapRects(). Also, depending on the Boolean value, we may draw debug
rectangles that reflect the original positions of facial elements before any swap.

import cv2
import filters
from managers import WindowManager, CaptureManager
import rects
from trackers import FaceTracker

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)
 self._faceTracker = FaceTracker()
 self._shouldDrawDebugRects = False
 self._curveFilter = filters.BGRPortraCurveFilter()

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 self._faceTracker.update(frame)
 faces = self._faceTracker.faces
 rects.swapRects(frame, frame,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

 [face.faceRect for face in faces])

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 def onKeypress(self, keycode):
 """Handle a keypress.

 space -> Take a screenshot.
 tab -> Start/stop recording a screencast.
 x -> Start/stop drawing debug rectangles around faces.
 escape -> Quit.

 """
 if keycode == 32: # space
 self._captureManager.writeImage('screenshot.png')
 elif keycode == 9: # tab
 if not self._captureManager.isWritingVideo:
 self._captureManager.startWritingVideo(
 'screencast.avi')
 else:
 self._captureManager.stopWritingVideo()
 elif keycode == 120: # x
 self._shouldDrawDebugRects = \
 not self._shouldDrawDebugRects
 elif keycode == 27: # escape
 self._windowManager.destroyWindow()

if __name__=="__main__":
 Cameo().run()

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[76]

The following screenshot is from Cameo. Face regions are outlined after the user
presses X:

The following screenshot is from Cameo. American businessman Bill Ackman
performs a takeover of the author's face:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Copying faces between camera feeds
For the two-camera version, let's create a new class, CameoDouble, which is a
subclass of Cameo. On initialization, a CameoDouble invokes the constructor of
Cameo and also creates a second CaptureManager. During the main loop in run(), a
CameoDouble gets new frames from both cameras and then gets face tracking results
for both frames. Faces are copied from one frame to the other using copyRect().
Then, the destination frame is displayed, optionally with debug rectangles drawn
overtop it. We can implement CameoDouble in cameo.py as follows:

For some models of MacBook, OpenCV has problems using
the built-in camera when an external webcam is plugged in.
Specifically, the application may become deadlocked while waiting
for the built-in camera to supply a frame. If you encounter this
issue, use two external cameras and do not use the built-in camera.

class CameoDouble(Cameo):

 def __init__(self):
 Cameo.__init__(self)
 self._hiddenCaptureManager = CaptureManager(
 cv2.VideoCapture(1))

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 self._hiddenCaptureManager.enterFrame()
 frame = self._captureManager.frame
 hiddenFrame = self._hiddenCaptureManager.frame

 self._faceTracker.update(hiddenFrame)
 hiddenFaces = self._faceTracker.faces
 self._faceTracker.update(frame)
 faces = self._faceTracker.faces

 i = 0
 while i < len(faces) and i < len(hiddenFaces):
 rects.copyRect(
 hiddenFrame, frame, hiddenFaces[i].faceRect,
 faces[i].faceRect)

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Faces with Haar Cascades

[78]

 i += 1

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)

 self._captureManager.exitFrame()
 self._hiddenCaptureManager.exitFrame()
 self._windowManager.processEvents()

To run a CameoDouble instead of a Cameo, we just need to modify our
if __name__=="__main__" block, as follows:

if __name__=="__main__":
 #Cameo().run() # uncomment for single camera
 CameoDouble().run() # uncomment for double camera

Summary
We now have two versions of Cameo. One version tracks faces in a single camera
feed and, when faces are found, swaps them by copying and resizing. The other
version tracks faces in two camera feeds and, when faces are found in each, copies
and resizes faces from one feed to replace faces in the other. Additionally, in both
versions, one camera feed is made visible and effects are applied to it.

These versions of Cameo demonstrate the basic functionality that we proposed two
chapters ago. The user can displace his or her face onto another body, and the result
can be stylized to give it a more unified feel. However, the transplanted faces are
still just rectangular cutouts. So far, no effort is made to cut away non-face parts of
the rectangle or to align superimposed and underlying components such as eyes.
The next chapter examines some more sophisticated techniques for facial blending,
particularly using depth vision.

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/
Background Regions

and Depth
This chapter shows how to use data from a depth camera to identify foreground
and background regions, such that we can limit an effect to only the foreground or
only the background. As prerequisites, we need a depth camera, such as Microsoft
Kinect, and we need to build OpenCV with support for our depth camera. For build
instructions, see Chapter 1, Setting up OpenCV.

Creating modules
Our code for capturing and manipulating depth-camera data will be reusable
outside Cameo.py. So we should separate it into a new module. Let's create a file
called depth.py in the same directory as Cameo.py. We need the following import
statement in depth.py:

import numpy

We will also need to modify our preexisting rects.py file so that our copy
operations can be limited to a non-rectangular sub region of a rectangle.
To support the changes we are going to make, let's add the following
import statements to rects.py:

import numpy
import utils

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/Background Regions and Depth

[80]

Finally, the new version of our application will use depth-related functionality.
So, let's add the following import statement to Cameo.py:

import depth

Now, let's get deeper into the subject of depth.

Capturing frames from a depth camera
Back in Chapter 2, Handling Files, Cameras, and GUIs, we discussed the concept that
a computer can have multiple video capture devices and each device can have
multiple channels. Suppose a given device is a stereo camera. Each channel might
correspond to a different lens and sensor. Also, each channel might correspond to
a different kind of data, such as a normal color image versus a depth map. When
working with OpenCV's VideoCapture class or our wrapper CaptureManager,
we can choose a device on initialization and we can read one or more channels
from each frame of that device. Each device and channel is identified by an integer.
Unfortunately, the numbering of devices and channels is unintuitive. The C++
version of OpenCV defines some constants for the identifiers of certain devices and
channels. However, these constants are not defined in the Python version. To remedy
this situation, let's add the following definitions in depth.py:

Devices.
CV_CAP_OPENNI = 900 # OpenNI (for Microsoft Kinect)
CV_CAP_OPENNI_ASUS = 910 # OpenNI (for Asus Xtion)
Channels of an OpenNI-compatible depth generator.
CV_CAP_OPENNI_DEPTH_MAP = 0 # Depth values in mm (CV_16UC1)
CV_CAP_OPENNI_POINT_CLOUD_MAP = 1 # XYZ in meters (CV_32FC3)
CV_CAP_OPENNI_DISPARITY_MAP = 2 # Disparity in pixels (CV_8UC1)
CV_CAP_OPENNI_DISPARITY_MAP_32F = 3 # Disparity in pixels (CV_32FC1)
CV_CAP_OPENNI_VALID_DEPTH_MASK = 4 # CV_8UC1
Channels of an OpenNI-compatible RGB image generator.
CV_CAP_OPENNI_BGR_IMAGE = 5
CV_CAP_OPENNI_GRAY_IMAGE = 6

The depth-related channels require some explanation, as given in the following list:

•	 A depth map is a grayscale image in which each pixel value is the estimated
distance from the camera to a surface. Specifically, an image from the
CV_CAP_OPENNI_DEPTH_MAP channel gives the distance as a floating-point
number of millimeters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

•	 A point cloud map is a color image in which each color corresponds to
a spatial dimension (x, y, or z). Specifically, the CV_CAP_OPENNI_POINT_
CLOUD_MAP channel yields a BGR image where B is x (blue is right), G is y
(green is up), and R is z (red is deep), from the camera's perspective. The
values are in meters.

•	 A disparity map is a grayscale image in which each pixel value is the stereo
disparity of a surface. To conceptualize stereo disparity, let's suppose we
overlay two images of a scene, shot from different viewpoints. The result
would be like seeing double images. For points on any pair of twin objects
in the scene, we can measure the distance in pixels. This measurement is the
stereo disparity. Nearby objects exhibit greater stereo disparity than far-off
objects. Thus, nearby objects appear brighter in a disparity map.

•	 A valid depth mask shows whether the depth information at a given pixel
is believed to be valid (shown by a non-zero value) or invalid (shown by
a value of zero). For example, if the depth camera depends on an infrared
illuminator (an infrared flash), then depth information is invalid in regions
that are occluded (shadowed) from this light.

The following screenshot shows a point-cloud map of a man sitting behind a
sculpture of a cat:

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/Background Regions and Depth

[82]

The following screenshot has a disparity map of a man sitting behind a sculpture
of a cat:

A valid depth mask of a man sitting behind a sculpture of a cat is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

Creating a mask from a disparity map
For the purposes of Cameo, we are interested in disparity maps and valid depth
masks. They can help us refine our estimates of facial regions.

Using our FaceTracker function and a normal color image, we can obtain
rectangular estimates of facial regions. By analyzing such a rectangular region in the
corresponding disparity map, we can tell that some pixels within the rectangle are
outliers—too near or too far to really be a part of the face. We can refine the facial
region to exclude these outliers. However, we should only apply this test where the
data are valid, as indicated by the valid depth mask.

Let's write a function to generate a mask whose values are 0 for rejected regions of
the facial rectangle and 1 for accepted regions. This function should take a disparity
map, a valid depth mask, and a rectangle as arguments. We can implement it in
depth.py as follows:

def createMedianMask(disparityMap, validDepthMask, rect = None):
 """Return a mask selecting the median layer, plus shadows."""
 if rect is not None:
 x, y, w, h = rect
 disparityMap = disparityMap[y:y+h, x:x+w]
 validDepthMask = validDepthMask[y:y+h, x:x+w]
 median = numpy.median(disparityMap)
 return numpy.where((validDepthMask == 0) | \
 (abs(disparityMap - median) < 12),
 1.0, 0.0)

To identify outliers in the disparity map, we first find the median using numpy.
median(), which takes an array as an argument. If the array is of odd length,
median() returns the value that would lie in the middle of the array if the array
were sorted. If the array is of even length, median() returns the average of the two
values that would be sorted nearest to the middle of the array.

To generate the mask based on per-pixel Boolean operations, we use numpy.where()
with three arguments. As the first argument, where() takes an array whose elements
are evaluated for truth or falsity. An output array of like dimensions is returned.
Wherever an element in the input array is true, the where() function's second
argument is assigned to the corresponding element in the output array. Conversely,
wherever an element in the input array is false, the where() function's third
argument is assigned to the corresponding element in the output array.

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/Background Regions and Depth

[84]

Our implementation treats a pixel as an outlier when it has a valid disparity
value that deviates from the median disparity value by 12 or more. I chose the
value 12 just by experimentation. Feel free to tweak this value later based on the
results you encounter when running Cameo with your particular camera setup.

Masking a copy operation
As part of the previous chapter's work, we wrote copyRect() as a copy operation
that limits itself to given rectangles of the source and destination images. Now, we
want to apply further limits to this copy operation. We want to use a given mask that
has the same dimensions as the source rectangle. We shall copy only those pixels in
the source rectangle where the mask's value is not zero. Other pixels shall retain their
old values from the destination image. This logic, with an array of conditions and
two arrays of possible output values, can be expressed concisely with the numpy.
where() function that we have recently learned.

Let's open rects.py and edit copyRect() to add a new argument, mask. This
argument may be None, in which case we fall back to our old implementation of the
copy operation. Otherwise, we next ensure that mask and the images have the same
number of channels. We assume that mask has one channel but the images may have
three channels (BGR). We can add duplicate channels to mask using the repeat()
and reshape() methods of numpy.array. Finally, we perform the copy operation
using where(). The complete implementation is as follows:

def copyRect(src, dst, srcRect, dstRect, mask = None,
 interpolation = cv2.INTER_LINEAR):
 """Copy part of the source to part of the destination."""

 x0, y0, w0, h0 = srcRect
 x1, y1, w1, h1 = dstRect

 # Resize the contents of the source sub-rectangle.
 # Put the result in the destination sub-rectangle.
 if mask is None:
 dst[y1:y1+h1, x1:x1+w1] = \
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation)
 else:
 if not utils.isGray(src):
 # Convert the mask to 3 channels, like the image.
 mask = mask.repeat(3).reshape(h0, w0, 3)
 # Perform the copy, with the mask applied.
 dst[y1:y1+h1, x1:x1+w1] = \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

 numpy.where(cv2.resize(mask, (w1, h1),
 interpolation = \
 cv2.INTER_NEAREST),
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation),
 dst[y1:y1+h1, x1:x1+w1])

We also need to modify our swapRects() function, which uses copyRect()
to perform a circular swap of a list of rectangular regions. The modifications
to swapRects() are quite simple. We just need to add a new argument, masks,
which is a list of masks whose elements are passed to the respective copyRect()
calls. If the given masks is None, we pass None to every copyRect() call. The
following is the full implementation:

def swapRects(src, dst, rects, masks = None,
 interpolation = cv2.INTER_LINEAR):
 """Copy the source with two or more sub-rectangles swapped."""

 if dst is not src:
 dst[:] = src

 numRects = len(rects)
 if numRects < 2:
 return

 if masks is None:
 masks = [None] * numRects

 # Copy the contents of the last rectangle into temporary storage.
 x, y, w, h = rects[numRects - 1]
 temp = src[y:y+h, x:x+w].copy()

 # Copy the contents of each rectangle into the next.
 i = numRects - 2
 while i >= 0:
 copyRect(src, dst, rects[i], rects[i+1], masks[i],
 interpolation)
 i -= 1

 # Copy the temporarily stored content into the first rectangle.
 copyRect(temp, dst, (0, 0, w, h), rects[0], masks[numRects - 1],
 interpolation)

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/Background Regions and Depth

[86]

Note that the mask in copyRect() and masks in swapRects() both default to
None. Thus, our new versions of these functions are backward-compatible with
our previous versions of Cameo.

Modifying the application
For the depth-camera version of Cameo, let's create a new class, CameoDepth, as a
subclass of Cameo. On initialization, a CameoDepth class creates a CaptureManager
class that uses a depth camera device (either CV_CAP_OPENNI for Microsoft Kinect
or CV_CAP_OPENNI_ASUS for Asus Xtion, depending on our setup). During the main
loop in run(), a CameoDepth function gets a disparity map, a valid depth mask,
and a normal color image in each frame. The normal color image is used to estimate
facial rectangles, while the disparity map and valid depth mask are used to refine the
estimate of the facial region using createMedianMask(). Faces in the normal color
image are swapped using copyRect(), with the faces' respective masks applied.
Then, the destination frame is displayed, optionally with debug rectangles drawn
overtop it. We can implement CameoDepth in cameo.py as follows:

class CameoDepth(Cameo):
 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 device = depth.CV_CAP_OPENNI # uncomment for Microsoft Kinect
 #device = depth.CV_CAP_OPENNI_ASUS # uncomment for Asus Xtion
 self._captureManager = CaptureManager(
 cv2.VideoCapture(device), self._windowManager, True)
 self._faceTracker = FaceTracker()
 self._shouldDrawDebugRects = False
 self._curveFilter = filters.BGRPortraCurveFilter()
 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_DISPARITY_MAP
 disparityMap = self._captureManager.frame
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_VALID_DEPTH_MASK
 validDepthMask = self._captureManager.frame
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_BGR_IMAGE
 frame = self._captureManager.frame

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

 self._faceTracker.update(frame)
 faces = self._faceTracker.faces
 masks = [
 depth.createMedianMask(
 disparityMap, validDepthMask, face.faceRect) \
 for face in faces
]
 rects.swapRects(frame, frame,
 [face.faceRect for face in faces], masks)
 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)
 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)
 self._captureManager.exitFrame()
 self._windowManager.processEvents()

To run a CameoDepth function instead of a Cameo or CameoDouble function, we just
need to modify our if __name__=="__main__" block, as follows:

if __name__=="__main__":
 #Cameo().run() # uncomment for single camera
 #CameoDouble().run() # uncomment for double camera
 CameoDepth().run() # uncomment for depth camera

The following is a screenshot showing the CameoDepth class in action. Note that our
mask gives the copied regions some irregular edges, as intended. The effect is more
successful on the left and right sides of the faces (where they meet the background)
than on the top and bottom (where they meet hair and neck regions of similar depth):

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Foreground/Background Regions and Depth

[88]

Summary
We now have an application that uses a depth camera, facial tracking, copy
operations, masks, and image filters. By developing this application, we have
gained practice in leveraging the functionality of OpenCV, NumPy, and other
libraries. We have also practiced wrapping this functionality in a high-level,
reusable, and object-oriented design.

Congratulations! You now have the skill to develop computer vision applications
in Python using OpenCV. Still, there is always more to learn and do! If you liked
working with NumPy and OpenCV, please check out these other titles from
Packt Publishing:

•	 NumPy Cookbook, Ivan Idris
•	 OpenCV 2 Computer Vision Application Programming Cookbook, Robert Laganière,

which uses OpenCV's C++ API for desktops
•	 Mastering OpenCV with Practical Computer Vision Projects, (by multiple authors),

which uses OpenCV's C++ API for multiple platforms
•	 The upcoming book, OpenCV for iOS How-to, which uses OpenCV's C++ API

for iPhone and iPad
•	 OpenCV Android Application Programming, my upcoming book, which uses

OpenCV's Java API for Android

Here ends of our tour of OpenCV's Python bindings. I hope you are able to use this
book and its codebase as a starting point for rewarding work in computer vision. Let
me know what you are studying or developing next!

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Pygame
This appendix shows how to set up the Pygame library and how to use Pygame
for window management in an OpenCV application. Also, the appendix gives an
overview of Pygame's other functionality and some resources for learning Pygame.

All the finished code for this chapter can be downloaded from my
website: http://nummist.com/opencv/3923_06.zip.

Installing Pygame
Let's assume that we already have Python set up according to one of the approaches
described in Chapter 1, Setting up OpenCV. Depending on our existing setup, we can
install Pygame in one of the following ways:

•	 Windows with 32-bit Python: Download and install Pygame 1.9.1 from
http://pygame.org/ftp/pygame-1.9.1.win32-py2.7.msi.

•	 Windows with 64-bit Python: Download and install Pygame 1.9.2 preview
from http://www.lfd.uci.edu/~gohlke/pythonlibs/2k2kdosm/pygame-
1.9.2pre.win-amd64-py2.7.exe.

•	 Mac with Macports: Open Terminal and run the following command:
$ sudo port install py27-game

•	 Mac with Homebrew: Open Terminal and run the following commands to
install Pygame's dependencies and, then, Pygame itself:
$ brew install sdl sdl_image sdl_mixer sdl_ttf smpeg portmidi

$ /usr/local/share/python/pip install \

> hg+http://bitbucket.org/pygame/pygame

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Pygame

[90]

•	 Ubuntu and its derivatives: Open Terminal and run the following command:
$ sudo apt-get install python-pygame

•	 Other Unix-like systems: Pygame is available in the standard repositories of
many systems. Typical package names include pygame, pygame27, py-game,
py27-game, python-pygame, and python27-pygame.

Now, Pygame should be ready for use.

Documentation and tutorials
Pygame's API documentation and some tutorials can be found online at
http://www.pygame.org/docs/.

Al Sweigart's Making Games With Python and Pygame is a cookbook for recreating
several classic games in Pygame 1.9.1. The free electronic version is available online
at http://inventwithpython.com/pygame/chapters/ or as a downloadable PDF
file at http://inventwithpython.com/makinggames.pdf.

Subclassing managers.WindowManager
As discussed in Chapter 2, Handling Cameras, Files and GUIs, our object-oriented
design allows us to easily swap OpenCV's HighGUI window manager for another
window manager, such as Pygame. To do so, we just need to subclass our managers.
WindowManager class and override four methods: createWindow(), show(),
destroyWindow(), and processEvents(). Also, we need to import some
new dependencies.

To proceed, we need the managers.py file from Chapter 2, Handling Cameras, Files,
and GUIs and the utils.py file from Chapter 4, Tracking Faces with Haar Cascades.
From utils.py, we only need one function, isGray(), which we implemented
in Chapter 4, Tracking Faces with Haar Cascades. Let's edit managers.py to add the
following imports:

import pygame
import utils

Also in managers.py, somewhere after our WindowManager implementation, we
want to add our new subclass called PygameWindowManager:

class PygameWindowManager(WindowManager):
 def createWindow(self):
 pygame.display.init()
 pygame.display.set_caption(self._windowName)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[91]

 self._isWindowCreated = True
 def show(self, frame):
 # Find the frame's dimensions in (w, h) format.
 frameSize = frame.shape[1::-1]
 # Convert the frame to RGB, which Pygame requires.
 if utils.isGray(frame):
 conversionType = cv2.COLOR_GRAY2RGB
 else:
 conversionType = cv2.COLOR_BGR2RGB
 rgbFrame = cv2.cvtColor(frame, conversionType)
 # Convert the frame to Pygame's Surface type.
 pygameFrame = pygame.image.frombuffer(
 rgbFrame.tostring(), frameSize, 'RGB')
 # Resize the window to match the frame.
 displaySurface = pygame.display.set_mode(frameSize)
 # Blit and display the frame.
 displaySurface.blit(pygameFrame, (0, 0))
 pygame.display.flip()
 def destroyWindow(self):
 pygame.display.quit()
 self._isWindowCreated = False
 def processEvents(self):
 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN and \
 self.keypressCallback is not None:
 self.keypressCallback(event.key)
 elif event.type == pygame.QUIT:
 self.destroyWindow()
 return

Note that we are using two Pygame modules: pygame.display and pygame.event.

A window is created by calling pygame.display.init() and destroyed by calling
pygame.display.quit(). Repeated calls to display.init() have no effect, as
Pygame is intended for single-window applications only. The Pygame window has a
drawing surface of type pygame.Surface. To get a reference to this Surface, we can
call pygame.display.get_surface() or pygame.display.set_mode(). The latter
function modifies the Surface entity's properties before returning it. A Surface
entity has a blit() method, which takes, as arguments, another Surface and a
coordinate pair where the latter Surface should be "blitted" (drawn) onto the first.
When we are done updating the window's Surface for the current frame, we should
display it by calling pygame.display.flip().

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Pygame

[92]

Events, such as keypresses, are polled by calling pygame.event.get(), which
returns the list of all events that have occurred since the last call. Each event is of type
pygame.event.Event and has the property type, which indicates the category of an
event such as pygame.KEYDOWN for keypresses and pygame.QUIT for the window's
Close button being clicked. Depending on the value of type, an Event entity may have
other properties, such as key (an ASCII key code) for the KEYDOWN events.

Relative to the base WindowManager that uses HighGUI, PygameWindowManager
incurs some overhead cost by converting between OpenCV's image format and
Pygame's Surface format of each frame. However, PygameWindowManager offers
normal window closing behavior, whereas the base WindowManager does not.

Modifying the application
Let's modify the cameo.py file to use PygameWindowManager instead of
WindowManager. Find the following line in cameo.py:

from managers import WindowManager, CaptureManager

Replace it with:

from managers import PygameWindowManager as WindowManager, \
 CaptureManager

That's all! Now cameo.py uses a Pygame window that should close when the
standard Close button is clicked.

Further uses of Pygame
We have used only some basic functions of the pygame.display and pygame.event
modules. Pygame provides much more functionality, including:

•	 Drawing 2D geometry
•	 Drawing text
•	 Managing groups of drawable AI entities (sprites)
•	 Capturing various input events relating to the window, keyboard, mouse,

and joysticks/gamepads
•	 Creating custom events
•	 Playback and synthesis of sounds and music

For example, Pygame might be a suitable backend for a game that uses computer
vision, whereas HighGUI would not be.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[93]

Summary
By now, we should have an application that uses OpenCV for capturing (and possibly
manipulating) images, while using Pygame for displaying the images and catching
events. Starting from this basic integration example, you might want to expand
PygameWindowManager to wrap additional Pygame functionality or you might want to
create another WindowManager subclass to wrap another library.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Haar Cascades
for Custom Targets

This appendix shows how to generate Haar cascade XML files like the ones used
in Chapter 4, Tracking Faces with Haar Cascades. By generating our own cascade
files, we can potentially track any pattern or object, not just faces. However, good
results might not come quickly. We must carefully gather images, configure
script parameters, perform real-world tests, and iterate. A lot of human time and
processing time might be involved.

Gathering positive and negative training
images
Do you know the flashcard pedagogy? It is a method of teaching words and
recognition skills to small children. The teacher shows the class a series of
pictures and says the following:

"This is a cow. Moo! This is a horse. Neigh!"

The way that cascade files are generated is analogous to the flashcard pedagogy.
To learn how to recognize cows, the computer needs positive training images that
are pre-identified as cows and negative training images that are pre-identified as
non-cows. Our first step, as trainers, is to gather these two sets of images.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Haar Cascades for Custom Targets

[96]

When deciding how many positive training images to use, we need to consider the
various ways in which our users might view the target. The ideal, simplest case is
that the target is a 2D pattern that is always on a flat surface. In this case, one positive
training image might be enough. However, in other cases, hundreds or even thousands
of training images might be required. Suppose that the target is your country's flag.
When printed on a document, the flag might have a predictable appearance but when
printed on a piece of fabric that is blowing in the wind, the flag's appearance is highly
variable. A natural, 3D target, such as a human face, might range even more widely
in appearance. Ideally, our set of positive training images should be representative of
the many variations our camera may capture. Optionally, any of our positive training
images may contain multiple instances of the target.

For our negative training set, we want a large number of images that do not contain
any instances of the target but do contain other things that our camera is likely to
capture. For example, if a flag is our target, our negative training set might include
photos of the sky in various weather conditions. (The sky is not a flag but is often
seen behind a flag.) Do not assume too much though. If the camera's environment is
unpredictable and the target occurs in many settings, use a wide variety of negative
training images. Consider building a set of generic environmental images that you
can reuse across multiple training scenarios.

Finding the training executables
To automate cascade training as much as possible, OpenCV provides two
executables. Their names and locations depend on the operating system and
the particular setup of OpenCV, as described in the following two sections.

On Windows
The two executables on Windows are called ONopencv_createsamples.exe and
ONopencv_traincascade.exe. They are not prebuilt. Rather, they are present only
if you compiled OpenCV from source. Their parent folder is one of the following,
depending on the compilation approach you chose in Chapter 1, Setting up OpenCV:

•	 MinGW: <unzip_destination>\bin
•	 Visual Studio or Visual C++ Express: <unzip_destination>\bin\Release

If you want to add the executables' folder to the system's Path variable, refer back
to the instructions in the information box in the Making the choice on Windows XP,
Windows Vista, Windows 7, and Windows 8 section of Chapter 1, Setting up OpenCV.
Otherwise, take note of the executables' full path because we will need to use it in
running them.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[97]

On Mac, Ubuntu, and other Unix-like systems
The two executables on Mac, Ubuntu, and other Unix-like systems are called
opencv_createsamples and opencv_traincascade. Their parent folder is one
of the following, depending on your system and the approach that you chose in
Chapter 1, Setting up OpenCV:

•	 Mac with MacPorts: /opt/local/bin
•	 Mac with Homebrew: /opt/local/bin or /opt/local/sbin
•	 Ubuntu with Apt: /usr/bin
•	 Ubuntu with my custom installation script: /usr/local/bin
•	 Other Unix-like systems: /usr/bin and /usr/local/bin

Except in the case of Mac with Homebrew, the executables' folder should be in
PATH by default. For Homebrew, if you want to add the relevant folders to PATH,
see the instructions in the second step of the Using Homebrew with ready-made packages
(no support for depth cameras) section of Chapter 1, Setting up OpenCV. Otherwise, note
the executables' full path because we will need to use it in running them.

Creating the training sets and cascade
Hereafter, we will refer to the two executables as <opencv_createsamples> and
<opencv_traincascade>. Remember to substitute the path and filename that are
appropriate to your system and setup.

These executables have certain data files as inputs and outputs. Following is a typical
approach to generating these data files:

1.	 Manually create a text file that describes the set of negative training images.
We will refer to this file as <negative_description>.

2.	 Manually create a text file that describes the set of positive training images.
We will refer to this file as <positive_description>.

3.	 Run <opencv_createsamples> with <negative_description> and
<positive_description> as arguments. The executable creates a
binary file describing the training data. We will refer to the latter
file as <binary_description>.

4.	 Run <opencv_traincascade> with <binary_description> as an
argument. The executable creates the binary cascade file, which we
will refer to as <cascade>.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Haar Cascades for Custom Targets

[98]

The actual names and paths of <negative_description>, <positive_description>,
<binary_description>, and <cascade> may be anything we choose.

Now, let's look at each of the three steps in detail.

Creating <negative_description>
<negative_description> is a text file listing the relative paths to all negative
training images. The paths should be separated by line breaks. For example, suppose
we have the following directory structure, where <negative_description> is
negative/desc.txt:

negative
 desc.txt
 images
 negative 0.png
 negative 1.png

Then, the contents of negative/desc.txt could be as follows:

"images/negative 0.png"
"images/negative 1.png"

For a small number of images, we can write such a file by hand. For a large number
of images, we should instead use the command line to find relative paths matching
a certain pattern and to output these matches to a file. Continuing our example,
we could generate negative/desc.txt by running the following commands on
Windows in Command Prompt:

> cd negative

> forfiles /m images*.png /c "cmd /c echo @relpath" > desc.txt

Note that in this case, relative paths are formatted as .\images\negative 0.png,
which is acceptable.

Alternatively, in a Unix-like shell, such as Terminal on Mac or Ubuntu, we could run
the following commands:

$ cd negative

$ find images/*.png | sed -e "s/^/\"/g;s/$/\"/g" > desc.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[99]

Creating <positive_description>
<positive_description> is needed if we have more than one positive training
image. Otherwise, proceed to the next section. <positive_description> is a
text file listing the relative paths to all positive training images. After each path,
<positive_description> also contains a series of numbers indicating how many
instances of the target are found in the image and which sub-rectangles contain those
instances of the target. For each sub-rectangle, the numbers are in this order: x, y,
width, and height. Consider the following example:

"images/positive 0.png" 1 120 160 40 40
"images/positive 1.png" 2 200 120 40 60 80 60 20 20

Here, images/positive 0.png contains one instance of the target in a sub-rectangle
whose upper-left corner is at (120, 160) and whose lower-right corner is at (160,
200). Meanwhile, images/positive 1.png contains two instances of the target.
One instance is in a sub-rectangle whose upper-left corner is at (200, 120) and whose
lower-right corner is at (240, 180). The other instance is in a sub-rectangle whose
upper-left corner is at (80, 60) and whose lower-right corner is at (100, 80).

To create such a file, we can start by generating the list of image paths in the same
manner as for <negative_description>. Then, we must manually add data about
target instances based on an expert (human) analysis of the images.

Creating <binary_description> by running
<opencv_createsamples>
Assuming we have multiple positive training images and, thus, we created
<positive_description>, we can now generate <binary_description> by
running the following command:

$ <opencv_createsamples> -vec <binary_description> -info <positive_
description> -bg <negative_description>

Alternatively, if we have a single positive training image, which we will refer to as
<positive_image>, we should run the following command instead:

$ <opencv_createsamples> -vec <binary_description> -image <positive_
image> -bg <negative_description>

For other (optional) flags of <opencv_createsamples>, see the official documentation
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Haar Cascades for Custom Targets

[100]

Creating <cascade> by running
<opencv_traincascade>
Finally, we can generate <cascade> by running the following command:

$ <opencv_traincascade> -data <cascade> -vec <binary_description> -bg
<negative_description>

For other (optional) flags of <opencv_traincascade>, see the official documentation
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.

Vocalizations
For good luck, make an imitative sound when running
<opencv_traincascade>. For example, say "Moo!" if
the positive training images are cows.

Testing and improving <cascade>
<cascade> is an XML file that is compatible with the constructor for OpenCV's
CascadeClassifier class. For an example of how to use CascadeClassifier, refer
back to our implementation of FaceTracker in Chapter 4, Tracking Faces with Haar
Cascades. By copying and modifying FaceTracker and Cameo, you should be able
to create a simple test application that draws rectangles around tracked instances of
your custom target.

Perhaps in your first attempts at cascade training, you will not get reliable tracking
results. To improve your training results, do the following:

•	 Consider making your classification problem more specific. For example, a
bald, shaven, male face without glasses cascade might be easier to
train than a general face cascade. Later, as your results improve, you can try
to expand your problem again.

•	 Gather more training images, many more!
•	 Ensure that <negative_description> contains all the negative training

images and only the negative training images.
•	 Ensure that <positive_description> contains all the positive training

images and only the positive training images.
•	 Ensure that the sub-rectangles specified in <positive_description>

are accurate.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[101]

•	 Review and experiment with the optional flags to <opencv_createsamples>
and <opencv_traincascade>. The flags are described in the official
documentation at http://docs.opencv.org/doc/user_guide/ug_
traincascade.html.

Good luck and good image-hunting!

Summary
We have discussed the data and executables that are used in generating cascade
files that are compatible with OpenCV's CascadeClassifier. Now, you can start
gathering images of your favorite things and training classifiers for them!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
64-bit Python

installing 10
<binary_description>

creating, by <opencv_createsamples>
running 99

<cascade>
creating, by <opencv_traincascade

running 100
improving 100
testing 100

<negative_description>
creating 98

<positive_description>
creating 99

A
API reference 22
application

modifying 59, 86, 87
application modifications

about 73
face, copying 77, 78
face swapping 74, 76

B
basic I/O scripts

about 23
camera frames, capturing 27, 28
camera frames, displaying in

Windows 28, 29
image, converting 25, 26
image file, reading 24

image file, writing 24
raw bytes, converting 25, 26
video file, reading 26, 27
video file, writing 26, 27

binary installers
using 9

blit() method 91

C
cameo 31
CameoDepth class 86
CameoDepth function 87
camera

frames, capturing 80
CaptureManager class 32, 40, 86
cascade 62
CascadeClassifier class 100
channel mixing

about 42
CMV color space, simulating 45
RC color space, simulating 44
RGV color space, simulating 45
sample 43
Technicolor 42

Close button 92
CMake

using 9-11
using, via customized readymade

script 18, 19
compilers

using 9-11
convolution matrix 56
copy operation

masking 84, 86
cubic spline interpolation 46

www.it-ebooks.info

http://www.it-ebooks.info/

[104]

curves
applying 48, 49
caching 48, 49
color space, bending 46
formulating 47
object-oriented curve filters,

designing 50-52
photo films, emulating 52

custom kernels 56, 58, 59

D
depth map 80
disparity map

about 81
mask, creating 83

E
edges

highlighting 55
embossed effect 58
equalizeHist() function 70

F
faces

tracing 68-73
filter2D() function 56
frames

capturing, from depth camera 80
Fuji Provia

emulating 53
Fuji Velvia

emulating 54

H
Haar cascade

about 61
conceptualizing 62
data, obtaining 63
modules, creating 64

I
isGray() 90

K
kernel 55
KEYDOWN event 92
Kodak Portra

emulating 53

M
MacPorts

Homebrew, using with custom packages 17
Homebrew, using with readymade

packages 16, 17
used, with custom packages 14, 15
used, with readymade packages 13

managers.WindowManger
about 90
subclassing 90-92

max() function 46
min() function 45
modules

creating 41, 79

N
negative training images

about 95, 96
generating, on Mac 97
generating, on Ubuntu 97
generating, on Windows 96

NumPy 7
numpy.where() function 84

O
object-oriented design

about 31
Cameo class 39, 40
keyboard, abstracting 37, 38
video stream, abstracting 32-37
window, abstracting 37, 38

Official OpenCV forum 22
onKeypress() method 39
OpenCV 2.1 Python Reference 21
OpenCV project concept 30
OpenNI 7

www.it-ebooks.info

http://www.it-ebooks.info/

[105]

OpenNI 1.5.4.0
downloading 10
installing 10

open source software (OSS) 13

P
photo films

cross-processing, emulating 54
Fuji Provia, emulating 53
Fuji Velvia, emulating 54
Kodak Portra, emulating 53

pip 16
point cloud map 81
Portfile 13
positive training images 95, 96
private 34
protected 34
Pygame

API documentation and tutorials, URL 90
application, modifying 92
installing, ways 89, 90
managers.WindowManger,

subclassing 90-92
uses 92

Pygame 1.9.1
URL, for downloading 89
URL, for installing 89

Pygame 1.9.2
URL, for downloading 89
URL, for installing 89

pygame.display.set_mode() 91
pygame.event.get() 92
Pygame window console 91

R
rectangles

cutting 65-67
hierarchy, defining 64
pasting 65-67
tracing 65-67

rects.outlineRect() function 72
repository 13
resize() function 65

run() method 39

S
samples

running 20, 21
SciPy 7
SensorKinect 7
SensorKinect 0.93

installing 10
setup tools

for Mac 12
for Ubuntu 17
for Unix-like systems 19, 20
for Windows 8

stereo disparity 81
swapRects() function 85

T
time.time() function 32
tracking type

defining 64
Tutorials 22

U
Ubuntu 12.04 LTS 17
Ubuntu repository

using 18
update() method 70
utility functions

adding 67, 68

V
valid depth mask 81
V (value) channel 50

W
window size 62

X
Xcode Developer Tools

setting up 12

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
OpenCV Computer Vision with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Persistence with Hibernate
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile,
from augmented reality and number plate recognition
to face recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer
vision topics, for research or commercial use

2.	 Each chapter is a separate project covering
a computer vision problem, written by a
professional with proven experience on that
topic

3.	 All projects include a step-by-step tutorial and
full source-code, using the C++ interface of
OpenCV

OpenCV 2 Computer Vision
Application Programming
Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features
of the OpenCV library

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3.	 Describes fundamental concepts in computer
vision and image processing

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that gurantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
SciPy and Python

1.	 Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations

2.	 Step-by-step examples to easily implement
statistical analysis and data mining that rivals
in performance any of the costly specialized
software suites

web2py Application Development
Cookbook
ISBN: 978-1-84951-546-7 Paperback: 364 pages

Over 110 recipes to master this full-stack Python web
framework

1.	 Take your web2py skills to the next level by
dipping into delicious, usable recipes in this
cookbook

2.	 Learn advanced web2py usage from building
advanced forms to creating PDF reports

3.	 Written by developers of the web2py project
with plenty of code examples for interesting
and comprehensive learning

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Setting up OpenCV
	Choosing and using the right setup tools
	Making the choice on Windows XP, Windows Vista, Windows 7, or Windows 8
	Using binary installers (no support for depth cameras)
	Using CMake and compilers

	Making the choice on Mac OS X Snow Leopard, Mac OS X Lion, or Mac OS X Mountain Lion
	Using MacPorts with ready-made packages
	Using MacPorts with your own custom packages
	Using Homebrew with ready-made packages
(no support for depth cameras)
	Using Homebrew with your own custom packages

	Making the choice on Ubuntu 12.04 LTS or Ubuntu 12.10
	Using the Ubuntu repository (no support for depth cameras)
	Using CMake via a ready-made script that you may customize

	Making the choice on other Unix-like systems

	Running samples
	Finding documentation, help, and updates
	Summary

	Chapter 2:
Handling Files, Cameras,
and GUIs
	Basic I/O scripts
	Reading/Writing an image file
	Converting between an image and raw bytes
	Reading/Writing a video file
	Capturing camera frames
	Displaying camera frames in a window

	Project concept
	An object-oriented design
	Abstracting a video stream –
managers.CaptureManager
	Abstracting a window and keyboard – managers.WindowManager
	Applying everything – cameo.Cameo

	Summary

	Chapter 3:
Filtering Images
	Creating modules
	Channel mixing – seeing in Technicolor
	Simulating RC color space
	Simulating RGV color space
	Simulating CMV color space

	Curves – bending color space
	Formulating a curve
	Caching and applying a curve
	Designing object-oriented curve filters
	Emulating photo films
	Emulating Kodak Portra
	Emulating Fuji Provia
	Emulating Fuji Velvia
	Emulating cross-processing

	Highlighting edges
	Custom kernels – getting convoluted
	Modifying the application
	Summary

	Chapter 4:
Tracking Faces with
Haar Cascades
	Conceptualizing Haar cascades
	Getting Haar cascade data
	Creating modules
	Defining a face as a hierarchy of rectangles
	Tracing, cutting, and pasting rectangles
	Adding more utility functions
	Tracking faces
	Modifying the application
	Swapping faces in one camera feed
	Copying faces between camera feeds

	Summary

	Chapter 5:
Detecting Foreground/Background Regions
and Depth
	Creating modules
	Capturing frames from a depth camera
	Creating a mask from a disparity map
	Masking a copy operation
	Modifying the Application
	Summary

	Appendix A:
Integrating with Pygame
	Installing Pygame
	Documentation and tutorials
	Subclassing managers.WindowManager
	Modifying the application
	Further uses of Pygame
	Summary

	Appendix B:
Generating Haar Cascades for Custom Targets
	Gathering positive and negative training images
	Finding the training executables
	On Windows
	On Mac, Ubuntu, and other Unix-like systems

	Creating the training sets and cascade
	Creating <negative_description>
	Creating <positive_description>
	Creating <binary_description> by running <opencv_createsamples>
	Creating <cascade> by running <opencv_traincascade>

	Testing and improving <cascade>
	Summary

	Index

